Coordination of Freeway Ramp Meters and Arterial Traffic Signals (FOT)

Dongyan Su, GSR
John Spring, Software Engineer
XY Lu, PATH, Project Manager and Principal Researcher

Alex Skabardonis, Project PI

PATH, U. C. Berkeley
12/13/2012
Outlines

- Where Are We?
- Demo: Conceptually Integrated System
- Interface with 2070 Controller
- Further Intersection Traffic Data Collection
- Simulation Development Based on New Data
- Project Review
- Next Step
Where Are We?

- Task 1: Develop a Project Team and Charter
- Task 2: Technical Literature Review
- Task 3: Developing Work Plan and Finalizing the ConOps
- Task 4: Site Selection, Data Collection and Modeling
- Task 5: Selecting/Developing Feasible Coordination Strategies
- Task 6: Preliminary Field Implementation of the ConOps
- Task 7: System Integration and Field Test
- Task 8: Demonstration and Preliminary Evaluation after Study
- Task 9: Preparing Study Report and Final Report
Demo: A Conceptually Integrated System
Interface with 2070 Controller: Traffic Signal Control

- Uses AB3418 protocol (a subset of NTCIP) over COM1 serial port
- Uses laptop/PC104 host in place of field master
- Currently is a simple utility for sending byte strings to serial port
- Eventually will use our publish/subscribe database (db_slv©) to interface to send timing from optimal control algorithm
- Can change max and min green for a given phase
Interface with 2070 Controller: Traffic Signal Control

• Uses laptop/PC104 host in place of field master
• Uses AB3418 protocol (a subset of NTCIP) over COM1 serial port
• Interface with AB3418 allows us to change
 – Minimum and maximum green ➞ set them equal to get the desired green time
 – Green extension
 – Cycle length and offset for local plans
 – Per previous discussion, will not change minimum green time

• Interface to the control algorithm is via interprocess messaging using PATH’s in-memory data pool (called db_slv for historical purposes). This is a publish/subscribe database that can block on data changes in any of its data inputs. (Blocking means that the CPU will “wait” until it receives a message that data is ready, thus freeing the CPU to do other things.)
Interface with 2070 Controller: Running URMS

• Currently we are sending ramp metering messages via Ethernet to the local 2070 ramp meter controller running URMS:
 – Open TCP/IP connection between laptop and 2070
 – Interface with control algorithm via db_slv
 – Wait for changes to lane metering settings
 – Send modified URMS message to 2070

• Functions
 – To get real-time data
 ➢ Mainline detector
 ➢ Onramp detector
 – To send ramp metering rate for each onramp
Further Intersection Traffic Data Collection on 09/05/12
Further Intersection Traffic Data Collection on 09/05/12

• Scheme with 3 Miovision VCU and 2 PATH Camera
 – Miovision VCU: intersection movement traffic count
 – PATH video camera: onramp and main movement queue length

• Data Covering Time:
 – Wednesday 09/05/12
 – Time: 4:00pm – 7:00pm

• Weather: fine, a little cloudy

• Traffic demand flow: high – intersection left turn pocket overflow sometimes
Simulation Development

• Incorporate new data
 – Use data collected by Miovision system. Data was aggregated over 5min
 – Aggregated 5min data from PeMS.

• Calibration
 – Search parameters to improve simulation performance.
Model Calibration

• Flow
 – Compute the percentage of acceptable simulated flow
 – Aggregated flow in 10min
 – Freeway: detector at upstream of Taylor SB on-ramp, 1 lane available
 – Intersection: 8 movements
 – Criteria
 ➢ Link flow quantity
 – 700vph < Flow < 2700vph, within 15%;
 – Flow < 700vph, within 100vph;
 – Flow > 2700vph, within 400vph;
 ➢ Link flow GEH
 – \(GEH = \sqrt{\frac{2(M-C)^2}{M+C}} \)

• Occupancy and Speed
 – Mean Square Root Error
 – Aggregated over 10min
Calibration Result (Intersection)

<table>
<thead>
<tr>
<th></th>
<th>EB Left</th>
<th>EB Throug h</th>
<th>EB Right</th>
<th>WB Left</th>
<th>WB Throug h</th>
<th>SB Left</th>
<th>NB Left</th>
<th>NB Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean acceptable case</td>
<td>100%</td>
<td>86.9%</td>
<td>68.8%</td>
<td>78.1%</td>
<td>93.8%</td>
<td>100%</td>
<td>100%</td>
<td>95.6%</td>
</tr>
<tr>
<td>GEH<5</td>
<td>94.4%</td>
<td>86.9%</td>
<td>76.9%</td>
<td>81.9%</td>
<td>95%</td>
<td>98.8%</td>
<td>100%</td>
<td>98.8%</td>
</tr>
<tr>
<td>Best acceptable case</td>
<td>100%</td>
<td>93.8%</td>
<td>93.8%</td>
<td>87.5%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Worst acceptable case</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
<td>68.8%</td>
<td>87.5%</td>
<td>100%</td>
<td>100%</td>
<td>87.5%</td>
</tr>
</tbody>
</table>
Calibration Result (Freeway)

<table>
<thead>
<tr>
<th></th>
<th>Flow</th>
<th>Occupancy</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean acceptable case</td>
<td>93.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEH<5</td>
<td>88.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best acceptable case</td>
<td>93.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst acceptable case</td>
<td>87.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Square Root Error</td>
<td></td>
<td>4.9%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Smallest Error</td>
<td></td>
<td>4.5%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Largest Error</td>
<td></td>
<td>5.2%</td>
<td>5.4%</td>
</tr>
</tbody>
</table>
Model Calibration

- Improvement

<table>
<thead>
<tr>
<th>Performance</th>
<th>Criteria</th>
<th>May 17 data</th>
<th>Sep 05 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway Flow Percentage</td>
<td>80%</td>
<td>93.1%</td>
<td></td>
</tr>
<tr>
<td>GEH<5</td>
<td>73%</td>
<td>88.8%</td>
<td></td>
</tr>
<tr>
<td>Intersection Flow Percentage</td>
<td>64%</td>
<td>68.8%</td>
<td></td>
</tr>
<tr>
<td>GEH<5</td>
<td>71%</td>
<td>76.9%</td>
<td></td>
</tr>
<tr>
<td>Freeway Occupancy Mean Square Root Error</td>
<td>6.3%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Freeway Speed Mean Square Root Error</td>
<td>11.7%</td>
<td>5.0%</td>
<td></td>
</tr>
</tbody>
</table>
Model Calibration – Next Step

- **Calibration**
 - The queue lengths are too long.
 - Deviations of flows at intersection are large.

- **Control**
 - Test control algorithm.
Project Review: Objectives – Long Term

• Large scale system problem:
 – Freeway corridor traffic and control
 – Related arterial(s) intersections traffic and control
 – Dynamic interaction between the two

• To resolve any (or potential) inconsistency and conflict between the two traffic control systems;

• To balance the traffic flows overall system for accommodating more traffic in peak hours;

• To eventually minimize Total Travel Time (TTT) system wide and to improve mobility, reduce emission and energy consumption;
Project Review: Objectives – Short Term

• To coordinate one (feeding) intersection and one onramp meter
• To identify
 – Where and when coordination is necessary
 – Where and when is feasible
 – Technical hurdles in coordination of the two subsystems
 – Conflict of interests between the two and how to resolve
• To hopefully improve the performance of the system in some aspect in some level which could be quantified;
• To set an example for overcoming any hurdle(s) caused by multiple jurisdictions;
• To laid down a good foundation for a large project involving a freeway corridor and related arterial corridor(s) if it is successful.
Next Step

- Further model calibration
- Control and coordination algorithm tuning for improvement
- Performance evaluation through simulation
- Closely work with D4 freeway and intersection traffic engineers
- D4 for field installation of a 2070 Controller at Taylor Intersection (need HQ Traffic Division to provide a controller)
- Get PeMS real-time data and intersection data through interface
- Develop traffic data processing modules for freeway and intersection data
- Start to build wireless communication