Truck CACC Project Status:
Development of CACC Control System

California PATH Team
02/20/2015
Truck Work Status

- Control System Hardware
- Control System Structure
- Control Actuation Strategy
- Preliminary Truck Test Plan for Modeling
- J-Bus Data Requirement List
Control System Hardware

- PATH PC-104 computer with large enough Solid Drive, running
 - Operating system: QNX 7.0
 - Interface with 3 CAN Buses: 2 for truck info, 1 for sensors
 - WSU DSRC with dual antenna
 - 5 Hz GPS
 - 1 Wide angle Sick Lidar
 - Connecting with a laptop for system development
 - Emergency switch to cut-off the link with J-Bus
 - Interfacing with J-bus
 - Interfacing with Volvo XPC
 - Control data logger
 - Shock-absorber for PC-104 Computer
- Power supply
Control System Hardware

- 1 laptop
 - Tablet Driver Display
 - Video camera
 - Serial connection with PC-104
 - Video and DVI data logger
Control System Hardware Structure (simplified)
Control System Software Structure

- GPS Data
- Truck Relative Pos Determination
- Maneuver Coordination: desired position and velocity
- Truck Longitudinal Dynamics: engine, driveline, tire, aerodynamic drag, etc ➔ desired torque
- Engine torque control
- Brake system control: engine brake, E-air brake
Control Actuation Strategy

- PATH PC-104 Computer directly interface with J-1939 Bus for control actuation
 - Engine torque control
 - Engine retarder control (braking)
 - EBS Control
 - No Transmission Retarder
Preliminary Field Test Plan for Modeling

- Data reading from J-Bus
- Command writing to J-Bus
- Data collection for modeling
 - Engine
 - Engine retarder
 - Transmission
 - Driveshaft
 - EBS (Electronic Braking System)
J-Bus Data Requirement List

- Stefan is currently in Greensboro to handle J-Bus interface and investigate feasibility of data reading and command writing for each required data item
 - Engine (torque, engine brake, engine speed, ...)
 - Driver control signal (accelerator, brake, switch, ...)
 - Onboard integrated sensor
 - Driveline: (Transmission, Drive shaft)
 - Vehicle speed, fuel rate
 - Truck weight estimation
 - Control command activation

- Outcome: almost all the data have been found available
- Our expected control strategy is feasible
Preliminary Test Plan for Modeling

- Manual driving test along I-580 between Buchanan and Bayview: about 3300 m, reasonably flat and straight
Preliminary Test Plan for Modeling

• Need 5 Hz GPS data for
 – Location determination
 – UTC Time stamping

• Using a laptop to interface with the CAN for
 – Data collection