Coordination of Freeway Ramp Meters and Arterial Traffic Signals (FOT)

XY Lu, PATH, Project Manager and Principal Researcher
Dongyan Su, GSR, PATH, U. C. Berkeley

Project PI: Alex Skabardonis

05/16/2012
Outlines

• Project Objectives
• More Literature Review (Task 2)
• Site Selection for Phase I
• Data Collection
• Traffic Analysis of SR87 near Taylor
• Higher Level Coordination Strategy
• Modeling and Simulation
• Next Step
• Discussion
Project Objectives – Long Term

• Large scale system problem:
 – Freeway corridor traffic and control
 – Related arterial(s) intersections traffic and control
 – Dynamic interaction between the two

• To resolve any (or potential) inconsistency and conflict between the two traffic control systems;

• To balance the traffic flows overall system for accommodating more traffic in peak hours;

• To eventually minimize Total Travel Time (TTT) system wide and to improve mobility, reduce emission and energy consumption;
Project Objectives – Short Term

• To coordinate one (feeding) intersection and one onramp meter
• To identify
 – Where and when coordination is necessary
 – Where and when is feasible
 – Technical hurdles in coordination of the two subsystems
 – Conflict of interests between the two and how to resolve
• To hopefully improve the performance of the system in some aspect in some level which could be quantified;
• To set an example for overcoming any hurdle(s) caused by multiple jurisdictions;
• To laid down a good foundation for a large project involving a freeway corridor and related arterial corridor(s) if it is successful.
More Technical Literature Review (Task 2)

• Coordinated Freeway Corridor Ramp Metering and Arterial Traffic Signal Control:
 – Tian, Z., Messer, C., and Balke, K., Modeling the impact of ramp metering queues on diamond interchange operations, Transportation Research Record 1867, 2004, pp. 172-182.
Site Selection for Phase I - Main Factors

- Recurrent congestion in a peak hour(s)
- System Isolation: To make sure that the congestion is mainly caused by the interaction of freeway and arterial traffic flow
 - Capacity of the subject section
 - Freeway demand upstream
 - Freeway demand downstream (not caused by back-propagation)
 - Traffic demand from current onramp (eventually from arterial)
 - Arterial intersection traffic signal control
- Onramp length and number of lanes (storage capacity)
- Sensor locations and density
- Data quality
- Complexity of the system
Data Collection for SR87-Taylor

• Video data collection on 04/03/12
• PeMS Data Collection on 04/03/12
 – 30s Lane by Lane (flow, occupancy, speed)
 – 5min Lane by Lane (flow, occupancy, speed)
Video Data Collection - Taylor Intersection on 04/03/12
4:50-6:10pm

• Three Camera Locations
Traffic Analysis of SR87 near Taylor

• SR87-Taylor SB Sensor Locations
• Traffic Situation Details for Freeway Section
 – Upstream at Bayshore
 – Taylor
 – Downstream at Julian
SR87-Taylor SB Sensor Locations
SB Traffic at SR87-Bayshore on 04/03/12
SB Traffic at SR87-Bayshore on 04/03/12

Mainline VDS 401816 - Guapalupe Parkway

Raw Data for Mainline 401816 - All Lanes
Mainline VDS 401816 - Guapalupe Parkway
Tue 04/03/2012 00:00:00 to Tue 04/03/2012 23:59:59

Graph showing speed data over time.
SB Traffic at SR87-Taylor on 04/03/12
SB Traffic at SR87-Taylor on 04/03/12
SB Traffic at SR87-Taylor on 04/03/12
SB Traffic at SR87 - Julian on 04/03/12

Mainline VDS 402057 - Julian St rm-s-dlg

Raw Data for Mainline 402057 - All Lanes
Mainline VDS 402057 - Julian St rm-s-dlg
Tue 04/03/2012 00:00:00 to Tue 04/03/2012 23:59:59

Flow (veh/5 min)

04/03 00:00 04/03 01:00 04/03 02:00 04/03 03:00 04/03 04:00 04/03 05:00 04/03 06:00 04/03 07:00 04/03 08:00 04/03 09:00 04/03 10:00 04/03 11:00 04/03 12:00 04/03 13:00 04/03 14:00 04/03 15:00 04/03 16:00 04/03 17:00 04/03 18:00 04/03 19:00 04/03 20:00 04/03 21:00 04/03 22:00 04/03 23:00

402057 Lane 1 Flow 402057 Lane 2 Flow 402057 Lane 3 Flow 402057 Lane 4 Flow

SE ON FR QMD PY SE ON FR EB JUL SE ON FR AUXRN SE OFF TO LELON

8.59 7.59 6.59 5.59 4.59 3
SB Traffic at SR87- Julian on 04/03/12
SB Traffic at SR87- Julian on 04/03/12
Higher Level Coordination Strategy: SR-87-Taylor

- Overall System Analysis
- Potential Performance Parameters
- Higher Level Control/Coordination Logistics
Overall System Analysis: Freeway Section

• Road Geometry

• Upstream traffic is moderate
• Downstream diverging
 – Lane/capacity increasing
 – Two close onramps with high demand may also cause traffic congestion
 – System partially isolated from freeway upstream & downstream in certain time period
Overall System Analysis: SR-87-Taylor

• Freeway SB off-ramp flow to intersection are low in PM peak
• Freeway NB off-ramp flow to intersection is medium-high but off-ramp length is long enough
• Intersection demand flow to NB onramp are low in PM peak
 – NB can be decoupled from SB from Intersection viewpoint
 – Off-ramp can be decoupled from the system at intersection
• Diamond exchange is simplified for PM peak:
 – Arterial (Taylor)
 ➢ EB and WB through traffic
 ➢ EB right turn and WB left turn traffic ➔ feeding flows to (SR87-SB) onramp
 ➢ Other movements are minor: always setting to minimum green-times
 – Freeway (SR87)
 ➢ Main lane upstream/downstream flow
 ➢ Onramp flow determined by RM rate
Potential Performance Parameters

- Freeway flow
- Total delay of intersection for all movements
- Onramp queue length (onramp delay)
- Onramp spillback probability
Higher Level Control/Coordination Logistics

- Low to Medium Traffic (Occ < 10% - critical occupancy): Keep freeway at its capacity flow as long as possible
 - Occupancy <5%:
 - Onramp:
 - Increase RM rate or RM off (to max onramp flow)
 - Intersection:
 - Feeding movements have higher priority s. t. onramp storage limit
 - 5% < Occupancy <10%:
 - Onramp:
 - Proportional RM strategy (ALINEA)
 - Intersection:
 - Balance the demand/supply ratio of all the movement s. t. onramp storage limit (implicitly using intersection storage)
Higher Level Control/Coordination Logistics

- Medium to High Traffic: If traffic congestion back-propagate from downstream (10% < Occ <20%)
 - **Onramp:**
 - RM rate is proportional to mainline occupancy (ALINEA)
 - Fully use onramp storage
 - **Intersection:**
 - Green time distribution to balance the demand/supply ratio of all the movement s. t. onramp storage limit (implicitly using intersection storage)
Higher Level Control/Coordination Logistics

- High Demand Traffic:
 - $20\% < \text{Occupancy} < 30\%$
 - Onramp:
 - RM rate is the lowest rate
 - Fully use the onramp storage
 - Intersection:
 - Fill up the intersection storage first
 - Reduce green times of the movements to the onramps
 - Balance the demand/supply of other movements except the movements to onramp
 - Use extra cycle time for other movements
Higher Level Control/Coordination Logistics

• Saturated Traffic:
 – **Occupancy > 30%**

 ➢ **Onramp:**
 – RM rate: *needs more consideration*
 – Fully use onramp storage
 – Onramp flow will depend on the acceptance of the mainline in merging area

 ➢ **Intersection:**
 – Fully use intersection storage
 – Green time distribution to balance the demand/supply ratio of all the movements s. t. onramp storage limit (implicitly using intersection storage)
Traffic Modeling and Simulation

- Current Intersection and Onramp Traffic Timing Plan
- Traffic Analysis Based on Video Data
- Modeling, Calibration and Simulation
- Preliminary Coordination Strategy
Current Intersection Traffic Timing Plan

- Intersection: Actuated control, timing plan from D4
Current Ramp Metering Plan

- Metering plan from Caltrans District 4: Local Response based on Occupancy (proportional control)

<table>
<thead>
<tr>
<th>Taylor on-ramp HOV lane (15:00-19:00)</th>
<th>Taylor on-ramp general lane (15:00-17:15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% occ</td>
<td>Meter rate</td>
</tr>
<tr>
<td>4</td>
<td>900</td>
</tr>
<tr>
<td>6</td>
<td>820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taylor on-ramp general lane (17:15-17:45)</th>
<th>Taylor on-ramp general lane (17:45-19:00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% occ</td>
<td>Meter rate</td>
</tr>
<tr>
<td>4</td>
<td>900</td>
</tr>
<tr>
<td>6</td>
<td>800</td>
</tr>
<tr>
<td>9</td>
<td>660</td>
</tr>
<tr>
<td>10</td>
<td>600</td>
</tr>
</tbody>
</table>
Traffic Analysis Based on Video Data

- Taylor St traffic flow, 5-6pm
Traffic Analysis Based on Video Data

- Taylor St traffic flow, 5-6pm

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Taylor EB left</th>
<th>Taylor EB through</th>
<th>Taylor WB left</th>
<th>Taylor WB through</th>
<th>NB off-ramp left</th>
<th>NB off-ramp right</th>
<th>SB off-ramp left</th>
<th>SB off-ramp right</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00-5:15</td>
<td>27</td>
<td>101</td>
<td>165</td>
<td>211</td>
<td>117</td>
<td>31</td>
<td>111</td>
<td>176</td>
</tr>
<tr>
<td>5:15-5:30</td>
<td>28</td>
<td>116</td>
<td>145</td>
<td>196</td>
<td>127</td>
<td>41</td>
<td>106</td>
<td>189</td>
</tr>
<tr>
<td>5:30-5:45</td>
<td>28</td>
<td>114</td>
<td>170</td>
<td>169</td>
<td>83</td>
<td>22</td>
<td>126</td>
<td>170</td>
</tr>
<tr>
<td>5:45-6:00</td>
<td>21</td>
<td>93</td>
<td>145</td>
<td>207</td>
<td>116</td>
<td>10</td>
<td>103</td>
<td>188</td>
</tr>
<tr>
<td>total</td>
<td>104</td>
<td>424</td>
<td>625</td>
<td>783</td>
<td>443</td>
<td>104</td>
<td>446</td>
<td>723</td>
</tr>
</tbody>
</table>
Current Intersection Traffic Timing Plan

• What we observed from video
 – There was a long queue on the on-ramp sometimes, so the left-turn and right-turn vehicles on Taylor St could not get in. The left-turn vehicles could blocked the through vehicles on Taylor EB.
 – There was a queue at Taylor EB downstream section (connected to San Pedro), so vehicles traveling to Taylor EB could not get in.
Modeling, Calibration and Simulation

- Demand data: PeMS and video
- Control: real signal for intersection and metering plan
- PeMS mainline flow as reference
- Simulation of Current Traffic Situation
SB Traffic at SR87-Taylor on 04/03/12
SB Traffic at SR87-Taylor on 04/03/12
Speed at Taylor

![Graph showing speed at Taylor](image)
Occupancy at Taylor
SB Traffic at SR87 - Julian on 04/03/12
Flow at Julian

[Graph showing flow data over time]
Preliminary Control/Coordination Strategy

- Intersection Control Strategy
- Ramp Metering Strategy
- Coordination strategy for balancing the v/c ration of each movement (technical details)
Intersection Control Strategy

- Goal: maximize intersection flow without sacrificing any movement
- Balance the ratio between assigned green time and desired green time of each movement
- Restrictions:
 - Minimum green
 - Ramp storage
 - Cycle length
 - Little waste of green time (the assigned green time doesn’t exceed the desired green time)
- Quadratic Programming, fast computation for real-time application
Intersection Control Strategy

Obj:
\[
\min \sum_{i \neq j} \left(g_i \frac{q_i + d_i}{f_i} - g_j \frac{q_j + d_j}{f_j} \right)
\]

Subject to:
\[
\forall i, g_i \geq G_{\text{min},i}
\]
\[
\sum_{r \in R} f_r \beta_r g_r \leq RA
\]
\[
\sum_{i=1 \sim 4} g_i = C
\]
or \(i = 5 \sim 8\)
\[
\forall i, g_i \leq \frac{(q_i + d_i \ast C)}{f_i}
\]
Ramp Metering Strategy

- State-based control, based on measured occupancy.
- Maximize freeway flow
- ALINEA at current stage
- Change to a coordinated ramp metering strategy when we consider freeway corridor with multiple ramps
Next Step

- Further Model Calibration
- Developing Simulation with Control/Coordination
- Simulation Results Comparison with Selected Performance Measure
- Selection of Control/Coordination Strategy for Field Test
Discussion