Freeway Recurrent Bottleneck Flow Maximization with VSA/VSL and CRM

Xiao-Yun Lu: Research Engineer
Danjue Chen: Post-doctoral Researcher
Steven Shladover: Research Engineer

California PATH Program, U. C. Berkeley
November 7, 2012
Outline

- VSL Study and Practice
- Bottleneck Flow Maximization
- Relationship with SPECIALIST
- Application to Other Freeway Bottlenecks
- Site Selection Considerations
- California Site Selection Examples
- Summary
VSL Study and Practice

- **Safety Benefits:**
 - Reduced speed difference between successive vehicles, between lanes and over time
 - Reduced shock waves at congestion start
 - More significant for safety improvement: in UK, 25~40% accident reduction observed

- **Mobility Benefit**
 - Throughput increased at some locations
 - Higher speed achieved for congested density at some locations
 - Achieved delay of traffic breakdown

- Higher compliance rate will be more effective ➔ Enforcement may be necessary
VSL Study and Practice

- Control Approaches:
 - Implementation objectives were more safety and weather related
 - Dynamically changing speed limit signs to adjust to changing roadway conditions
 - Some algorithms were ad hoc, local instead of system wide; some advanced algorithms simulated and tested, but performance was not satisfactory
 - VSL algorithms used in practice
 - Some for reducing shockwave at congestion tail
 - Some for flow maximization
Bottleneck Flow Maximization

- Control Strategy
- Control Objectives and Benefits
- Bottleneck Flow Maximization Strategy
- Shockwave Reduction/Avoidance
- Other Traffic Aspects Taken Into Consideration
- Implementation Related Issues
Control Strategy

- Combined VSL and CRM
- CRM for Onramp Demand Control
- VSL for Mainline Flow Control
 - Maximize Bottleneck Flow
 - Remove/reduce Shockwave
- Applicable to Recurrent Freeway Bottlenecks with
 - Lane reduction bottleneck
 - Weaving section with virtual lane drop (freeway split)
Control Objectives and Benefits

- **Control Objectives:**
 - Maximize bottleneck flow
 - Delay congestion start time if possible
 - Control density distribution
 - Achieve higher density (thus flow) for the same speed
 - Reduce total congestion time
 - Reduce shockwaves, including *Stop & Go*
 - Avoid off-ramp blocking and spill-back
 - Minimize VHT and Maximize VMT system wide
 - Byproducts: Improve safety and emissions
Control Objectives and Benefits

• Variable Speed Limits (VSL)
 – Influence driver behavior ➔ reduce speed variance in the same lane and between lanes (safety and environment)
 – Avoid shock waves (mobility, safety and environment) ➔ to avoid primary and secondary collisions
 – Keep homogenous flow when density changes (mobility) ➔ same speed can be maintained for higher density
 – Smooth traffic when demands are too high, or RM has to be switched off due to ramp length limit (equity, mobility)

• VSL and CRM are complementary in function
 – RM only controls the demand into the freeway; it has to be switched off if demand from local streets is too high in CA
 – VSL affects the mainline driver behavior (traffic flow)
 – Enforced VSL could help regulate the flow as desired to maximize the bottleneck flow
Control Objectives and Benefits

- **Coordinated Ramp Metering (CRM)**
 - Control density (or average density immediately downstream of the onramp) (mobility)
 - Balance demand and capacity at each onramp along the stretch, taking into account queue length limit (mobility & equity)

- **Benefits of CRM: Mitigating Local RM Problems**
 - Conflict with mainline flow which could aggravate the congestion at bottlenecks in peak hours
 - Storage capacity of onramps may not be fully used due to the demand flow and the length differences between onramps
 - Avoiding negative impact to arterial traffic
Bottleneck Flow Maximization Strategy

Why is Bottleneck flow below capacity if its upstream is congested?

Answer: Feeding flow into the bottleneck is low – even if the speed in the bottleneck is increasing, the density is decreasing.
Bottleneck Flow Maximization Strategy

How: (1) create a discharge section before the bottleneck;
(2) regulate the discharge section flow to bottleneck capacity flow
VSL Algorithm

- Stage 1: Congestion Start

- Stage 2: Congestion back propagation upstream

- Critical Point:
 - To determine the Critical VSL u_M according to measured discharge section flow, density or occupancy such that the flow is close to bottleneck capacity flow.
Snapshot (one typical vehicle speed) of VSL Strategy 1: at Stage 1

\[L_M = L_{m_h} = L_{m_t} \]

\[u_0 = V_f \]

\[V_d \]
Snapshot of VSL Strategy 1 at Stage 2

\[L_M = L_m \]

\[L_m \]

\[L_0 \]

\[u_0 = V_f \]

\[u_M \]

\[V_c \]

\[V_d \]
Snapshot of VSL Strategy 2: Gradually Increasing to u_M

Bottleneck

L_M

L_{m_h}

L_m

L_{m_f}

L_0

V_f

V_c

V_{SL_t}

V_{SL_h}

V_d

u_M
Other Traffic Aspects Taken Into Consideration

- The following factors have been taken into account:
 - Driver acceptance
 - Limit on speed variation over time
 - Limit on speed variation over space
 - Demand and capacity of onramp and mainline
 - Onramp storage capacity and estimated queue length
 - Maximizing the feeding flow to the bottleneck
 - Addressing possibility of creating queue upstream
Implementation Related Issues

- VSL and CRM can be implemented independently
- When implementing CRM alone, the speed in the model just uses the real time estimated traffic speed
- Critical to the success of field test or deployment → Data Health
- Traffic state parameter estimation based on real time data
- Proper feedback to the driver for better acceptance
 - Good visibility and advance in time/location
 - Appropriate location of VMS
 - Simple message to avoid driver distraction
 - VMS message update at a reasonable frequency
 - Convincing reason to adopt the advised speed
Implementation Related Issues

- **Critical Factors for VSL Implementation**
 - Higher level control logics for switching VSL according to the traffic
 - Demand below bottleneck capacity
 - Demand close to bottleneck capacity
 - Demand over bottleneck capacity
 - Road geometry and bottleneck type
 - Lane reduction or virtual lane reduction
 - Weaving section
 - Freeway merge
 - VSL advisory using portable VMS
 - Suitable advisory messages and VMS locations
 - Sensor location and traffic state estimation
Implementation Related Issues

• Critical factors for implementation of CRM
 – Higher level control logics for switching CRM according to the traffic
 ➢ Demand below bottleneck capacity
 ➢ Demand close to bottleneck capacity
 ➢ Demand over bottleneck capacity
 – Ramp storage capacity and demand: long enough to store most vehicles from arterials ➢ no need to coordinate with arterials
 – Onramp queue detection to improve performance
 – Sensor location limit ➢ needs traffic state estimation
Implementation Related Issues

- Critical factors for implementation of CRM
 - Most situations are difficult due to
 - High demands
 - Uneven distribution of demands over time and space
 - Road geometry limits
 - Coordination with arterial traffic control would be necessary
 - If road geometry permits
 - Traffic signal control in favor of certain movements in peak hours
 - Routing using VMS
Incorporate with SPECIALIST

- Those two algorithms address different freeway traffic problems, but complementary to each other
- Bottleneck Flow Maximization:
 - Recurrent bottleneck flow maximization (even if upstream demand is very high)
 - Shockwave reduction/avoidance at the end of the queue
 - Speed smoothing in other cases
- Current SPECIALIST algorithm
 - To resolve moving jam
 - To improving traffic flow
Incorporate with SPECIALIST

A macroscopic version of SPECIALIST could be used to

- If demand upstream is not very high – no more than the downstream capacity, use SPECIALIST for
 - fine tuning the VSL upstream of the queue to remove any moving jam
 - stabilizing the traffic further upstream to avoid potential of moving jam

- If demand upstream is very high (a created congestion section is unavoidable):
 - reduce shockwave effects at the end of the queue
 - fine tuning the flow moving into the storage section if queue wave-front estimation is available
Application to Other Freeway Bottlenecks

- **Lane Reduction**
 - Mainline lane reduction
 - Onramp acceleration lane ends
- **Virtual Lane Reduction**
 - Weaving/merging at freeway diverge
- **Freeway Merge**
 - With lane reduction
 - Without lane reduction
Lane Reduction due to Acceleration Lane Ends

Reccurrent bottleneck due to Merge lane end
Virtual Lane Reduction

- Freeway Diverge due to
 - Unbalanced Split Ratio
 - Weaving/Merging Effect

Example – I-80 W in PM Peak
Freeway Merge – **with Lane Reduction**

- **Road Geometry**

 \[Q_1 + Q_2 \geq Q_\delta; \quad q_1(t) + q_2(t) < Q_\delta \]

- **Congestion cause:** physical capacity drop, weaving/merging effects
Freeway Merge – with Lane Reduction

- Control Strategy:

 Freeway Merge with Lane Reduction:

 \[Q_1 + Q_2 \geq Q_b; \quad q_1^{clr} + q_2^{clr} \approx \alpha_w Q_b, \]

 \[0 < \alpha_w \leq 1, \text{ site dependent weaving factor to be tuned} \]

- Objective: to produce the joint flow close to bottleneck capacity flow; to minimize friction
Freeway Merge – without Lane Reduction

- Road Geometry: Congestion may be caused by weaving effect

\[Q_1 + Q_2 \approx Q_b; \quad q_1(t) + q_2(t) < Q_b \]

- Congestion cause: weaving/merging effects
Freeway Merge – **without Lane Reduction**

- **Control Strategy**

 \[Q_1 + Q_2 \approx Q_b; \quad q_1^{ctr}(t) + q_2^{ctr}(t) \approx \alpha_w Q_b \]

 \(0 < \alpha_w \leq 1\), site dependent weaving factor to be tuned

- **Objective:** to produce the joint flow close to bottleneck capacity flow; to minimize friction
Freeway Merge

- Define *weighted demand index* for each freeway branch based on the following factors
 - All the demand (traffic volume) on each freeway section upstream of the merge
 - All storage capacities: onramps, off-ramps and upstream storage section (for VSL)
 - Affected freeway section lengths determined by historical traffic data and observations

- Balance of flows from two freeways branches upstream according to weighted demand index

- Direct generalization to the merge of more than two freeways
Site Selection Considerations

- Mainly for VSL
 - Traffic Condition
 - Traffic demand is high in peak hours
 - Recurrent bottleneck most downstream
 - Congestion caused by lane reduction, *virtual lane reduction*, or freeway merge
 - Geometry
 - Upstream of the *main bottleneck* has adequate storage
 - No off-ramp or with a protected off-lane
 - Detection and data at critical locations:
 - at the start of the bottleneck and 500 m upstream;
 - each section has detectors 300~500 m apart;
 - Data quality is critical for performance
Site Selection Considerations

- Mainly for CRM
 - Road Geometry and Traffic Situation
 - Traffic is medium to high, but not saturated
 - Onramps are close enough
 - Facility
 - All onramps are metered along the corridor
 - Mainline sensor density is adequate
 - Onramp flow & queue detection is critical to CRM
 - Hardware setup would allow CRM control
 - Coordinate with arterial if road geometry permits through
 - Routing with VMS
 - Traffic signal control
Site Selection Considerations

- **Approach**
 - Road geometry analysis
 - Macroscopic traffic data analysis based on PeMS
 - Individual traffic detector data analysis to find causes of congestion
 - Discussion with local traffic engineers
 - Site visit for direct observation/experience of traffic conditions
California Site Selection Examples

- Some Candidate Sites
 - I-880 Nimitz Freeway Near Auto Mall Parkway
 - NB PM
 - SR99-Mack Road (Caltrans D3 - Sacramento):
 - NB AM: Lane Reduction Bottleneck
I-880 Nimitz Freeway NB AM Near Auto Mall Parkway
I-880 Nimitz Freeway NB AM Near Auto Mall Parkway

I-880 NB near Auto Mall Parkway, Fremont

Data Analysis Section

BN3

BN2
9/17/2012

MP: 15.07 -> 16.6
9/17 – 9/19

Occupancy

Speed
SR99-Mack Road NB AM Traffic
SR99-Mack Road NB AM Traffic

SR99-Mack Road, NB, Road Geometry and Sensor Location/Health

moderate congestion

Mp295.3 -297.1

On-Ramps:
- Fruitridge Road
- 47th Ave
- Florin Road
SR99-Mack Road NB AM Traffic
7/11/2012 – 7/13/2012

MP: 295.3 -> 296.5 -> 297.1

Occupancy

Speed
Summary

- VSL and CRM are complementary in function for freeway traffic management
- Combined VSL and CRM can be used for recurrent bottleneck flow maximization
- Simulation did before showed benefits in TTT and TTD
- VSL feedback to individual vehicle through I2V for advising or used as set-speed for ACC/CACC vehicles
- Generalization to freeway network is underway – will be simulated; could possibly be tested in FHWA STOL project, and Caltrans project at SR99 merge with SR50
- PATH will test CRM first at two sites: Caltrans D4 and D3; later VSL could be tested (still working on institutional issues)
- SPECILIST could be combined with bottleneck flow maximization method to improve overall performance in different traffic situations
VSL Feedback: Suggested VMS Displays for Feedback

- Speed 35 For Max Flow
- Speed 35 Congestion Ahead