Coordination of Freeway Ramp Meters and Arterial Traffic Signals (FOT)

XY Lu, PATH, Project Manager and Principal Researcher
Dongyan Su, GSR
John Spring, Software Engineer
Alex Skabardonis, Project PI

PATH, U. C. Berkeley
10/17/2012
Outlines

- Project Review - SOW
- Interface with 2070 Controller
- Further Intersection Traffic Data Collection
- Simulation Development
- ConOps Discussion
- Next Step
Project Review - SOW

- Task 1: Develop a Project Team and Charter
- Task 2: Technical Literature Review
- Task 3: Developing Work Plan and Finalizing the ConOps
- Task 4: Site Selection, Data Collection and Modeling
- Task 5: Selecting/Developing Feasible Coordination Strategies

- Task 6: Preliminary Field Implementation of the ConOps
- Task 7: System Integration and Field Test
- Task 8: Demonstration and Preliminary Evaluation after Study
- Task 9: Preparing Study Report and Final Report
Project Review: Objectives – Long Term

• Large scale system problem:
 – Freeway corridor traffic and control
 – Related arterial(s) intersections traffic and control
 – Dynamic interaction between the two

• To resolve any (or potential) inconsistency and conflict between the two traffic control systems;

• To balance the traffic flows overall system for accommodating more traffic in peak hours;

• To eventually minimize Total Travel Time (TTT) system wide and to improve mobility, reduce emission and energy consumption;
Project Review: Objectives – Short Term

• To coordinate one (feeding) intersection and one onramp meter
• To identify
 – Where and when coordination is necessary
 – Where and when is feasible
 – Technical hurdles in coordination of the two subsystems
 – Conflict of interests between the two and how to resolve
• To hopefully improve the performance of the system in some aspect in some level which could be quantified;
• To set an example for overcoming any hurdle(s) caused by multiple jurisdictions;
• To laid down a good foundation for a large project involving a freeway corridor and related arterial corridor(s) if it is successful.
Interface with 2070 Controller: Traffic Signal Control

- Uses AB3418 protocol (a subset of NTCIP) over COM1 serial port
- Uses laptop/PC104 host in place of field master
- Currently is a simple utility for sending byte strings to serial port
- Eventually will use our publish/subscribe database (db_slv©) to interface to send timing from optimal control algorithm
- Can change max and min green for a given phase
Interface with 2070 Controller: Traffic Signal Control

• Uses laptop/PC104 host in place of field master
• Uses AB3418 protocol (a subset of NTCIP) over COM1 serial port
• Interface with AB3418 allows us to change
 – Minimum and maximum green
 – Green extension
 – Cycle length and offset for local plans
 – Per previous discussion, will not change minimum green time
• Interface to the control algorithm is via interprocess messaging using PATH’s in-memory data pool (called db_slv for historical purposes). This is a publish/subscribe database that can block on data changes in any of its data inputs. (Blocking means that the CPU will “wait” until it receives a message that data is ready, thus freeing the CPU to do other things.)
Interface with 2070 Controller: Running URMS

- Currently we are sending ramp metering messages via Ethernet to the local 2070 ramp meter controller running URMS:
 - Open TCP/IP connection between laptop and 2070
 - Interface with control algorithm via db_slv
 - Wait for changes to lane metering settings
 - Send modified URMS message to 2070

- Functions
 - To get real-time data
 - Mainline detector
 - Onramp detector
 - To send ramp metering rate for each onramp
Further Intersection Traffic Data Collection on 09/05/12
Further Intersection Traffic Data Collection on 09/05/12

- Scheme with 3 Miovision VCU and 2 PATH Camera
 - Miovision VCU: intersection movement traffic count
 - PATH video camera: onramp and main movement queue length

- Data Covering Time:
 - Wednesday 09/05/12
 - Time: 4:00pm – 7:00pm

- Weather: fine, a little cloudy

- Traffic demand flow: high – intersection left turn pocket overflow sometimes
Simulation Development

- Simulation model
 - Road Network Modeling
 - Intersection: Taylor, San Pedro.
 - Freeway: both directions, Taylor and Julian.
 - Lane Extension for Total Travel Time Estimation
 - Driver Behavior Model Selection
 - Aimsun default model: Gipps model
 - Signal Control
 - Real intersection timing plans from D4 & San Jose
 - Real ramp metering plans from D4
Simulation Development

- Video Data at Taylor Intersection:
 - Manually Counted the Following Traffic State Parameters
 - Vehicle count for each movement of Taylor Intersection
 - Onramp Time Series Data
 - Inflow count
 - Outflow count
 - Ramp Meter Timing
 - Onramp HOV Lane vehicle count
 - All aggregated to 5min and used for calibration

- PeMS Freeway Data at 3 VDS Locations
 - 5min aggregated Data
 - 30s raw data
 - Flow, speed and occupancy
Simulation Development

• Software Upgrade
 – Upgrade from Aimsun 6.0 to Aimsun 7.0.
 – Upgrade driver behavior model.
 – More functionalities.

• Calibration
 – Search parameters to improve simulation performance.
Simulation Development - Model Calibration

- Flow
 - Compute the percentage of acceptable simulated flow
 - Aggregated flow in 5min
 - Freeway: detector at upstream of Taylor SB on-ramp, 1 lane available
 - Intersection: 8 movements
- Criteria
 - Link flow quantity
 - 700vph < Flow < 2700vph, within 15%;
 - Flow < 700vph, within 100vph;
 - Flow > 2700vph, within 400vph;
 - Link flow GEH
 \[GEH = \sqrt{\frac{2(M-C)^2}{M+C}} \]
Simulation Development - Model Calibration

Improvement (May 17 data)

<table>
<thead>
<tr>
<th>Performance</th>
<th>Criteria</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway Flow</td>
<td>Percentage</td>
<td>73%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>GEH<5</td>
<td>68%</td>
<td>73%</td>
</tr>
<tr>
<td>Intersection Flow (worst movement)</td>
<td>Percentage</td>
<td>67%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>GEH<5</td>
<td>70%</td>
<td>71%</td>
</tr>
<tr>
<td>Freeway Occupancy</td>
<td>Mean Square Root Error</td>
<td>9.9%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Freeway Speed</td>
<td>Mean Square Root Error</td>
<td>14.1%</td>
<td>11.7%</td>
</tr>
</tbody>
</table>
Simulation Development

- Problem in Simulation Development:
 - Software bug
ConOps Discussion

- Interfacing for Dynamic Ramp Metering Rate
 - URMS
- Interfacing for Intersection Traffic Signal Timing
Caltrans D4 Controller Running TSCP without a Field Master
Local RM Controller – 2070 Running URMS
Caltrans D4 Controller Running TSCP with a Field Master
Local RM Controller – 2070 Running URMS
Caltrans D4 Controller Running TSCP without Master
Caltrans D4 Controller Running TSCP with a Master
Next Step

- Traffic Data Processing (collected on 09/05/12)
- Further model calibration of modeling
- Control and coordination algorithm tuning for improvement
- Performance evaluation through simulation
- Interface with 2070 controller
- Building communication between two 2070 controller
 - One for Ramp Metering
 - One for intersection traffic control
- Start to integrate the system off-line at PATH