A Combined Quantitative and Qualitative Approach to Planning for Improved Intermodal Connectivity at California Airports (TO5406)

(Quarterly Meeting)

December 14, 2005

Project Team: Dr. Xiao-Yun Lu, Dr. Geoffrey Gosling, Ms. Jing Xiong, Dr. Steven Shladover,
Outline

• Objective
• Project Status
 – Progress on Current Tasks
 – First Year Report
• IAPT Development
• IAPT Demonstration
• Next Steps
• Discussion
Objective

– Develop techniques for analyzing the effectiveness of alternative strategies for improving intermodal connectivity at airports using a combined quantitative and qualitative approach

 • Quantitative: Analytical models of airport traveler and transportation provider’s behavior, traffic networks

 • Qualitative: Descriptive case studies and analysis of agency decision making processes

– Research products:

 • Case studies of intermodal access projects at California airports
 • Develop prototype Intermodal Airport Ground Access Planning Tool (IAPT)
 • Using IAPT to evaluate selected case study projects at California airports
 • Policy recommendations and planning guidelines
Project Status – Progress on Current Tasks

- Develop prototype user interface module for the Intermodal Airport Ground Access Planning Tool.
 - Preliminary screen design distributed for review
 - Programming of user interface commenced

- Develop mode choice analysis module for the prototype Intermodal Airport Ground Access Planning Tool and calibrate on data for selected region
 - Define mode choice model structure
 - Define mode choice analysis module data structure and interfaces with other IAPT modules
 - Review recent airport access mode choice models developed in other studies
 - Assemble airport ground transportation service data for calibration region
 - Assemble air passenger survey data for the model calibration region and geocode to analysis zones
 - Review and clean the air passenger survey response data
 - Assemble mode choice model estimation input files and perform iterative model estimation runs to develop mode choice model utility functions and parameter values
Project Status – Progress on Current Tasks

- Developing model of transportation service provider behavior
 - Selection of modeling paradigms (Nash game and elasticity-based)
 - Mathematical modeling and analysis
 - Algorithm development and programming in C code
 - Definition of example case for a single zone with multiple modes to test convergence
 - Generalize approach to multiple zones for all the modes

- Developing interface between sub-modules
 - Explore software language/application interface
 - Continue development of data table specifications
 - Commence programming module interface code

- Explore intermodal connectivity considerations in airport ground access
 - Review connectivity issues in transit network planning
 - Measuring connectivity in airport ground access
 - Integration with IAPT performance measures
Project Status – First Year Report

- Initial drafts of all chapters completed
- Appendices A and B completed, Appendix C in preparation
- Work in progress to refine/expand several chapters
 - Chapter 5: Mode choice model
 - Expand discussion of estimate dataset
 - Include initial model estimation results
 - Chapter 6: Transportation provider behavior model
 - Complete description of modeling approach
 - Revise material to improve clarity of explanation
 - Chapter 7: Measuring airport intermodal connectivity
 - Revise material to better relate to scope of research project
- Need to prepare Executive Summary
- Anticipate submittal of draft report by December 20th
IAPT Development

• Overall structure of the software
• Graphical user interface
• Mode choice model
• Data preparation for model development
• Transportation provider behavior
• Project evaluation: measures of performance
IAPT Software Components and Data Flow

- Ground Access System Configuration
- Graphical User Interface
- Analysis Control Program
- Transportation Service Characteristics
- Mode Choice Model
- Scenario Performance Measurement
- Analysis Results

Data Flow

Control
Graphical Use Interface (GUI)

- **Provides user with consistent approach to problem specification and data entry**
 - Regional data
 - Highway and transit network
 - Airport data
 - Available ground access/egress modes
 - Airport traffic level and air passenger characteristics
 - Project definition
 - Hierarchical structure
 - Available modes and time frame for analysis

- **Interacts with underlying relational database**
 - Contains all input data and outputs from IAPT model runs

- **Design of GUI functionality and screen layouts largely complete**
 - Model specification and modal service level data entry screens still need to be designed
 - Dependent on mode choice model development
Mode Choice Model Development

• **Role of mode choice model**
 - **Predict patronage on each ground access mode**
 - Response to changes in ground access service levels
 - Implications for transportation provider revenue
 - Changes in vehicular traffic levels
 - **Response to introduction of new services or modes**
 - Enhanced intermodal connectivity

• **Considerations**
 - **Need to reflect the factors that influence air party mode choice**
 - Travel time, service frequency (waiting time)
 - Cost
 - Accessibility, transfers, etc.
 - Air party characteristics (party size, trip duration, trip purpose, luggage, etc.)
 - **Need to distinguish between different market segments**
 - Residents vs. visitors
 - Business vs. personal trips
 - Type of trip origin (residence, hotel, other)
Mode Choice Model Development

- **Model estimation data requirements**
 - Air passenger access mode use and travel party characteristics
 - MTC Air Passenger Survey at Bay Area Airports
 - August/September 2001 (pre 9/11)
 - Approx 5,300 unique records (1,600 OAK, 2,260 SFO, 1,440 SJC)
 - Airport access mode service data for survey period
 - MTC 2000 Base Year highway and transit network
 - Airport parking rates from communication with airport staff
 - BART, Caltrain and VTA light rail schedules and fares from operator staff
 - Airport ground transportation service data
 - Information publications on file with airport staff and others
 - Discussions with operators
 - Estimated from 2005 service levels

- **Model estimation process**
 - Merge access mode service data with air party characteristics
 - Air passenger survey responses geocoded to MTC traffic analysis zone
 - Use maximum likelihood model estimation software (WinBiogme) to determine values of mode utility function coefficients
Data Preparation for Model Development

- Data describe service characteristics for ground access modes to SFO, OAK and SJC in 2001, 2002 and 2005
- Nine primary modes are listed in the table. Parking service characteristics are trip duration based, all others are based on MTC 1454 Transportation Analysis Zone (TAZ) system.
- The main variables of TAZ-based service levels are described in the following two slides

<table>
<thead>
<tr>
<th>Mode</th>
<th>SFO</th>
<th>OAK</th>
<th>SJC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Drop-off</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parking</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Taxi</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Door-to-door Van</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Scheduled Airport Bus</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Public Transit</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BART</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Caltrain</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VTA Light Rail</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Data Preparation for Model Development

<table>
<thead>
<tr>
<th>Mode</th>
<th>Attributes</th>
</tr>
</thead>
</table>
| Auto | Travel Distance
| | Travel Time (AM Peak)
| | Travel Time (PM Peak)
| | Travel Time (Off Peak) |
| Taxi | Fare |
| Door-to-Door Van | Fare for the first person
| | Fare for the second person
| | Frequency
| | Circulation time to pick up passengers |
| BART | Access time to the nearest BART station from origin TAZ
| | Access distance to the nearest BART station from origin TAZ
| | Headway
| | Ride time on train
| | Fare |
Data Preparation for Model Development

<table>
<thead>
<tr>
<th>Mode</th>
<th>Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltrain</td>
<td>Access time to the nearest Caltrain station from origin TAZ</td>
</tr>
<tr>
<td></td>
<td>Access distance to the nearest Caltrain station from origin TAZ</td>
</tr>
<tr>
<td></td>
<td>Headway</td>
</tr>
<tr>
<td></td>
<td>Ride time on train</td>
</tr>
<tr>
<td></td>
<td>Fare</td>
</tr>
<tr>
<td>VTA Light Rail</td>
<td>Access time to the nearest VTA light rail station from origin TAZ</td>
</tr>
<tr>
<td></td>
<td>Access distance to the nearest VTA light rail station from origin TAZ</td>
</tr>
<tr>
<td></td>
<td>Headway</td>
</tr>
<tr>
<td></td>
<td>Ride time on train</td>
</tr>
<tr>
<td></td>
<td>Fare</td>
</tr>
<tr>
<td>Scheduled Airport Bus</td>
<td>Access time to the nearest scheduled airport bus stop from origin TAZ</td>
</tr>
<tr>
<td></td>
<td>Access distance to the nearest scheduled airport bus stop from origin TAZ</td>
</tr>
<tr>
<td></td>
<td>Headway</td>
</tr>
<tr>
<td></td>
<td>Ride time on train</td>
</tr>
<tr>
<td></td>
<td>Fare</td>
</tr>
<tr>
<td>Public Transit Bus</td>
<td>Headway of transit</td>
</tr>
<tr>
<td></td>
<td>Ride time on bus</td>
</tr>
<tr>
<td></td>
<td>Fare</td>
</tr>
</tbody>
</table>
Data Preparation for Model Development

• **Highway travel times and distances**
 – Obtained from MTC Base Year 2000 highway network skim tree tables
 • From each zone to TAZ for each airport

• **Public transit bus travel times and fares**
 – Obtained from MTC Base Year 2000 transit network skim tree tables
 • From each zone to TAZ for each airport

• **Calculation of access times and distances to rail stations/bus stops**
 – Identified TAZ for each station/stop
 • Geocoded from station/stop address
 – Calculated distance to each station/stop TAZ for each zone
 – Selected closest station/stop for each zone
 – Obtained travel time and distance from MTC skim tree tables
Transportation Provider Behavior

- Two approaches to modeling transportation provider response to changes in competing modes or introduction of new service
 - Elasticity
 - Generalized Nash game

- Elasticity approach
 - Iterative procedure to represent transportation provider decisions based on patronage changes in response to changes in price and service levels
 - Using calibrated mode choice model for calculation
 - Indirect representation of competition between providers
 - Approach previously applied to transit networks
 - Fare changes as primary decision factor
 - Adjust service frequency to achieve reasonable load factor
Transportation Provider Behavior

• Generalized Nash game approach
 – Each mode is considered as a player, thus competition happens across modes
 – Full competition between modes assuming each mode knows the service levels of other modes
 – Consider access/egress path instead of whole transportation network
 – Use price as decision parameter but consider service frequency changes in discrete increments
 • Service frequency primarily concerns shared ride van and scheduled bus
 • Service frequency for other modes either not relevant (e.g. taxi) or not sensitive to changes in use for airport access trips (e.g. BART)
 – Assume rates/fares change by a uniform percentage, greatly simplifying the problem – avoiding the need to vary price structure across zones, etc.
Illustration of Access/Egress Paths

19
Transportation Providers Behavior

• **Implementation in IAPT**
 – Elasticity approach as short term goal
 – Generalized Nash Game approach as longer term goal
Project Evaluation – Measures of Performance

- Measures of performance defined by users from output measures generated by post-processing mode choice model results
 - Number of passengers
 - Number of air parties
 - Revenue
 - Vehicle trips
 - VMT
 - Emissions
 - Passenger travel time

- A measure of performance (MOP) consists of an output measure applied to a set of modes
 - e.g. Ridership (passengers) on all shared-ride modes
 - Revenue from on-airport parking
 - Emissions from all modes

- Output measures calculated by summation of mode use by each air party
 - Known trip origin allows access trip length calculation
Project Evaluation – Feasibility of Improved Access Services

• Evaluation of proposed projects to improve intermodal connectivity
• Considerations
 – Ridership and fare revenue changes (if any) from service enhancement
 – Capital and operating costs for service enhancement
 – Impact on use of other modes
 • Reduction in vehicle trips, VMT and emissions
 • Airport and operator revenue implications
• Capital and operating costs
 – User provides unit costs
 • Capital cost per route mile
 • Capital cost per vehicle
 • Operating cost per year (fixed cost)
 • Operating cost per vehicle-mile (variable cost)
 – IAPT calculates total capital and annual operating costs
 • Varies with service frequency defined for project
 – Determines number of vehicles required
 – Determines vehicle-miles per year
IAPT Demonstration

- Prototype version of IAPT is being developed in Visual Basic
- Initial focus on functionality of GUI
 - Layout of GUI screens needs to be modified for consistency with IAPT design
 - Current work is refining interaction with IAPT database
- Demonstration of current status of software development
Next Steps – Continued Development of IAPT

- **GUI development**
 - Modify screen layouts for consistency with IAPT design
 - Complete interface with database, data files and other modules

- **Calibration of mode choice model**
 - Complete preparation of Bay Area service data
 - Model estimation and development

- **Transportation provider modeling and algorithm**
 - Modeling constraints to generate realistic results
 - Refining representation of transportation provider decision making
 - Testing alternative optimization software
 - Convergence issues

- **Development of project evaluation module**
 - Calculating measures of performance
 - Interface with mode choice model results