A Combined Quantitative and Qualitative Approach to Planning for Improved Intermodal Connectivity at California Airports (TO5406-6406)

(Quarterly Meeting)
December 6, 2006

Project Team: Dr. Xiao-Yun Lu, Dr. Geoffrey Gosling, Ms. Kristin Tso, Mr. Steven Tung, Dr. Avi Ceder, Dr. Steven Shladover,
Outline

• Objectives
• Project Status
• Performance Evaluation
• IAPT Demonstration
• Presentation to MTC, SFO and BART Staff
• Next Steps
• Discussion
Objective

- Develop techniques for analyzing the effectiveness of alternative strategies for improving intermodal connectivity at airports using a combined quantitative and qualitative approach
 - Quantitative: Analytical models of airport traveler and transportation provider’s behavior, traffic networks
 - Qualitative: Descriptive case studies and analysis of agency decision making processes

- Research products:
 - Case studies of intermodal access projects at California airports
 - Develop prototype Intermodal Airport Ground Access Planning Tool (IAPT)
 - Using IAPT to evaluate selected case study projects at California airports
 - Policy recommendations and planning guidelines
Project Status – Progress on Current Tasks

- Develop prototype user interface module for the Intermodal Airport Ground Access Planning Tool.
 - Refining the IAPT graphical user interface

- Develop mode choice analysis module for the prototype Intermodal Airport Ground Access Planning Tool and calibrate on data for selected region
 - Further development of the OAK mode choice model
 - Extension to nested logit structure
 - Refine representation of regional transportation service data
 - Development of mode choice models for SFO and SJC

- Implement transportation provider modeling in IAPT
 - Development of Nash Game approach
Performance Evaluation

• System performance
 – Vehicle trips
 – Number of passengers
 – Transportation provider revenue
 – Vehicle-miles of travel (VMT) and vehicle-hours of travel (VHT)
 – Vehicle emissions
 – Passengers/vehicle-mile and passengers/vehicle-hour.

• Connectivity performance
 – Passenger waiting times
 – Number of passenger transfers
 – Connectivity-production cost
 • Combined measure of the value of traveler access times and transportation provider costs

• Need for an overall measure of intermodal connectivity
IAPT Demonstration

• Current status of software development
 – GUI
 – Project definition
 – Data entry and support
 – Computation
 – Display of analysis results
 • System performance measures
Presentation to MTC, SFO and BART Staff (Nov 14)

• Reaction to IAPT capabilities generally positive with some constructive suggestions for tool implementation and development

• IAPT capabilities
 – Issues in predicting future air passenger mode choice behavior
 – Forecasting air party characteristics in future years
 • Trends in air party characteristics over time
 – Data requirements to apply the tool to other airports
 – Extension to model interaction between airports
 • Air passenger airport choice

• Output display
 – Provide “drill-down” capability to present IAPT results for subsets of the market
 – Provide ability to export the analysis results in a standard format usable by other applications
Next Steps: Bay Area Case Studies

- **Objectives of case studies**
 - Demonstrate use of IAPT
 - Provide basis for policy recommendations
 - Analyze a range of different strategies

- **SFO**
 - Retrospective analysis of effect on ground access mode use
 - Validation of IAPT
 - Ferry service (San Francisco-SFO-South Bay)

- **OAK**
 - Oakland Airport Connector
 - APM link to Coliseum BART and Amtrak stations
 - South Peninsula off-airport terminal

- **SJC**
 - APM link to VTA light rail line
 - South County off-airport terminal
Next Steps: Policy Recommendations

• Key policy issues in airport ground access
 – Funding intermodal connections
 – Promoting use of high-occupancy modes
 – Measuring and monitoring system performance
 – Role of airport ground access in regional transportation planning
 – Interregional (cities or counties) jurisdictional issues

• Project selection and implementation
 – Measuring cost-effectiveness of alternative projects and strategies
 – Contribution of proposed projects to regional transportation goals
 – Institutional roles and responsibilities
 • Caltrans, MPOs, transit agencies, airport authorities, FTA, FAA, FHWA

• Development of project planning guidelines
 – Use of quantitative analysis in project evaluation
 – Measuring system performance
 – Strategies for improving intermodal connectivity
 – Importance of interagency coordination
Next Steps: IAPT Implementation

• Demonstration of the IAPT to additional potential users
• Documentation of IAPT development
Discussion

• IAPT functionality
 – GUI
 – Definition of case study projects
 – Data entry and data support needs
 – System performance measures
 • How to weigh the different performance measures in project selection
 • Use of system performance measures in policy assessment

• Measuring intermodal connectivity
 – Need for a policy-responsive measure
 • Reflects airport user perceptions of relative attractiveness of each mode
 • Measures effectiveness of alternative policies and potential projects
 – Possible approach
 • Ratio of weighted travel time/cost by high-occupancy mode to private car
 • Can be applied at the system, service or zonal level
 • Weights based on coefficients of mode choice model
Discussion

• Research needs beyond the current project
 – Airport choice in a region
 – Airport employees trips
 – Air cargo access/egress trips