A Combined Quantitative and Qualitative Approach to Planning for Improved Intermodal Connectivity at California Airports (TO5406-6406)

(Quarterly Meeting)
April 26, 2007

Project Team: Dr. Xiao-Yun Lu, Dr. Geoffrey Gosling, Ms. Kristin Tso, Mr. Steven Tung, Dr. Avi Ceder, Dr. Steven Shladover,
Outline

• Objectives
• Project Status
• Mode Choice Model Implementation
• Bay Area Case Studies
• Guidelines for Project Evaluation
 – Measuring system performance
 – Measuring intermodal connectivity
• IAPT Demonstration
• Next Step
• Discussion
Objective

- Develop techniques for analyzing the effectiveness of alternative strategies for improving intermodal connectivity at airports using a combined quantitative and qualitative approach
 - Quantitative: Analytical models of airport traveler and transportation provider’s behavior, traffic networks
 - Qualitative: Descriptive case studies and analysis of agency decision making processes

- Research products:
 - Case studies of intermodal access projects at California airports
 - Develop prototype Intermodal Airport Ground Access Planning Tool (IAPT)
 - Using IAPT to evaluate selected case study projects at California airports
 - Policy recommendations and planning guidelines
Project Status – Progress on Current Tasks

- Develop prototype user interface module for the Intermodal Airport Ground Access Planning Tool.
 - Automatic data usage
 - Flexible parameter change using GUI
 - Full implementation of performance parameters

- Develop mode choice analysis module for the prototype Intermodal Airport Ground Access Planning Tool and calibrate on data for selected region
 - Development of mode choice models for OAK, SFO and SJC

- Implement transportation provider modeling in IAPT
 - Development of Nash Game approach
Project Status – Progress on Current Tasks

- Development of project planning guidelines
 - Use of quantitative analysis in project evaluation
 - Measuring system performance
 - Strategies for improving intermodal connectivity
 - Importance of interagency coordination
 - Institutional Issues

- Define Bay Area case studies
 - Validate IAPT from BART extension to SFO
 - Five proposed projects serving Bay Area airports
Mode Choice Model Implementation

- Current work in progress
 - Extension of IAPT to allow user-defined mode choice model structure
 - Currently limited to multinomial logit model
 - Need to be able to handle nested logit model with variable structure of nests
 - Refinement of model calibration datasets to improve model fit
 - Develop separate highway travel times for AM peak, PM peak and off-peak
 - Develop zonal estimates of shared-ride van fares and travel times
 - Resolve missing data in MTC transit network travel times
 - Analysis of rental car use
 - Rental car use accounts for about 50% of visitor business trips and 25% of visitor personal trips
 - Decision to use rental car depends on factors other than travel between airport and final trip end
 - Best handled outside framework of choice decisions for other modes
Mode Choice Model Implementation

- **Analysis of rental car use**

<table>
<thead>
<tr>
<th></th>
<th>Visitor Business</th>
<th>Visitor Personal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rental car use (overall)</td>
<td>52%</td>
<td>26%</td>
</tr>
<tr>
<td>Hotel trip origin</td>
<td>54%</td>
<td>47%</td>
</tr>
<tr>
<td>Residence trip origin</td>
<td>53%</td>
<td>17%</td>
</tr>
<tr>
<td>Rental car use (San Francisco)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotel trip origin</td>
<td></td>
<td>42%</td>
</tr>
<tr>
<td>Residence trip origin</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>Rental car use (by trip duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 days or less</td>
<td>55%</td>
<td>36%</td>
</tr>
<tr>
<td>4 days or more</td>
<td>49%</td>
<td>20%</td>
</tr>
</tbody>
</table>
Bay Area Case Studies

• **Objective of case study analysis**
 – Demonstrate application of IAPT to analyze potential projects to enhance intermodal connectivity at the three Bay Area airports
 – Validate the IAPT analysis results by comparing them to prior studies of case study projects using other analytical tools
 – Explore issues involved in enhancing intermodal connectivity and relative effectiveness of alternative strategies

• **Potential case studies**
 – BART extension to SFO (validation of IAPT)
 – Oakland Airport Connector
 – San Jose International Airport APM
 – Oyster Point ferry service
 – South Peninsula off-airport terminal
 – Santa Clara County off-airport terminal

• **Case study attributes**
 – Enhancement of existing services vs. introduction of new services
 – Range of technologies
 – Issues involved in modeling new modes
Bay Area Case Studies

• Extension of BART to San Francisco International Airport
 – Extension opened in 2003
 – Provides direct service to station adjacent to International Terminal
 • AirTrain automated people-mover connection to domestic terminals
 – Presents opportunity to validate predictive ability of IAPT
 • Calculate expected BART ridership based on 2001/2002 MTC Airline Passenger Survey data
 • Compare predicted ridership with actual station exit counts
 • Need to make adjustments for BART riders other than air passengers (airport employees, visitors)
• **Oakland airport connector**

 – Replacement of existing AirBART shuttle bus by an automated people-mover

 – Project currently being developed by BART in cooperation with the Port of Oakland

 – Case study analysis will explore impact of varying fare and frequency (waiting time) on use of BART for trips to Oakland International Airport
Potential Case Studies - 2

- **San Jose International Airport APM**
 - Replacement of VTA Airport Flyer bus service to VTA light rail station with automated people-mover link
 - Potential extension of system to Santa Clara Caltrain station
 - Case study analysis will explore effect of fare and service frequency on ridership and system economics
Potential Case Studies - 3

- **Oyster Point Ferry Terminal**
 - Provide fast ferry service to San Francisco International Airport from downtown San Francisco ferry terminal and East Bay
 - Ferry terminal currently under consideration by SF Bay Area Water Transit Authority
 - Proposed shuttle bus link to SFO
 - Explore role of entirely new mode for airport access trips
Potential Case Studies - 4

- **South Peninsula Off-airport Terminal**
 - Improve access from South Peninsula to Oakland International Airport
 - **Current transit access very time consuming or infrequent**
 - Express bus service via Dumbarton Bridge from terminal in vicinity of Palo Alto Caltrain station
 - Provision of low-cost long-term parking at off-airport terminal reduces vehicle trips and provides an affordable alternative to driving to airport
 - Potential for additional service to SFO and SJC
• Santa Clara County Off-airport Terminal
 - Provide express bus service to Oakland and San Francisco International Airports
 • Provide access to international flights at SFO and low-cost airlines at OAK
 • Existing rail transit service to OAK (Capital Corridor route) infrequent
 • Caltrain service to communities south of San Jose infrequent outside peak period
 - Potential location in vicinity of I-280 and SR 87 interchange
 • Good freeway access from communities to south and west of San Jose
 • Close to Convention Center and VTA light rail station
 - Opportunity for service to SJC and SFO in conjunction with South Peninsula off-airport terminal bus routes
Guidelines for Project Evaluation

• Objective
 – Provide guidance on the use of the IAPT for evaluating proposed projects to improve intermodal connectivity at airports
 – Address institutional issues that arise with planning and implementing airport ground transportation improvements

• Considerations in project evaluation
 – Project definition
 – Measures of performance
 – Project evaluation process
 • Use of the IAPT
 – Institutional aspects
Guidelines for Project Evaluation

• Project definition
 – Identify the extent of the ground access system to be evaluated
 • Decision makers
 • System users
 • Ground transportation providers and operators
 • Relevant surface transportation network
 – Identify and prioritize the main goals for the proposed project
 • Balance demand and capacity
 • Minimize passenger travel time and user costs
 • Minimize system travel time, vehicle-miles of travel, and costs
 • Minimize pollution and traffic congestion
 • Financial viability
 – Identify the set of attributes that defines the proposed project alternative
 • Service level: trip times, service frequency (wait time)
 • Fare
 • Access time
Guidelines for Project Evaluation

- Measuring system performance
 - Provider perspective
 - Number of passengers
 - Transportation provider revenue
 - Passengers/vehicle-mile and passengers/vehicle-hour.
 - Passenger perspective
 - Access time, wait time, in-vehicle travel time
 - Number of transfers
 - Direct cost
 - Government and Society
 - Vehicle trips
 - Total travel time
 - Vehicle-miles of travel (VMT)
 - Vehicle-hours of travel (VHT)
 - Vehicle emissions (E)
Guidelines for Project Evaluation

• Measuring system performance
 – System efficiency
 • Passenger/vehicle-hour (PVH)
 • Passenger/vehicle-mile (PVM)
 – Economic considerations
 • Revenue/passenger (RP)
Guidelines for Project Evaluation

- **Measure of connectivity performance**
 - Balance of interests of passenger and transportation provider
 - Proposed measurement: Connectivity Production Cost (CPC)
 - Passenger access time & waiting-time + #passenger transfer + on-board travel time + average combined vehicle-hour operating cost
 - All converted to dollar value for comparison
 - Transfer penalty per passenger
 - Travel time cost per passenger
 - Waiting time cost per passenger
 - Perceived cost for drop-off and pick-up
 - The larger the CPC value, the lesser is the connectivity quality
Guidelines for Project Evaluation

- **Measure of connectivity performance - challenging issues**
 - Current CPC measure only suitable for comparison within public transportation modes
 - Travel time components tend to favor using single-party direct modes (e.g. taxi, private vehicle) over HOV modes in intermodal comparisons
 - Calculating CPC per passenger may be better, but implementation challenges exist for some modes like shared-ride van
 - Requirement for measures that are sensitive to policy issues
 - Reflect airport user perceptions of relative attractiveness of each mode
 - Measure effectiveness of alternative policies and potential projects
 - Possible approach
 - Ratio of weighted travel time/cost by high-occupancy mode to private car
 - Can be applied at the system, service or zonal level
 - Weights based on coefficients of mode choice model – reflect perceived disutility of different travel time components relative to costs
Guidelines for Project Evaluation

- **Project evaluation process**
 - Alignment of project performance with project goals
 - Feasibility check
 - Physical
 - Financial
 - Long term vs. Short term
 - Review of goal priority
 - Identification and resolution of system performance issues
 - Sensitivity analysis
 - Trial-and-error
Guidelines for Project Evaluation

• **Institutional aspects**
 – Potential institutional issues in airport ground access
 • Failure to recognize the need for improvement in airport ground access
 • Lack of comprehensive interagency communications and coordination
 • Lack of consensus in setting overall objectives
 – Handling institutional issues at the regional and inter-regional levels
 • Airports should be actively involved in regional and state transportation planning.
 • Airport authorities need to proactively address intermodal access issues.
 • Better coordination methods should be implemented among planning agencies.
 • Integrating airport ground access planning into local and regional transportation system planning.
Guidelines for Project Evaluation

- **Institutional aspects**
 - Handling institutional issues at the project level
 - Coordination between airports and local government
 - Coordination between airports and transportation providers
 - Establish and maintain an integrated database for ground access planning
 1. Airport data
 - Airport landside operations and master plan studies
 - Air passenger and airport employee characteristics and ground access travel choices
 - Airline schedules and fares
 - Ground transportation service data
 2. Regional data
 - Transit network
 - Highway network
 - Regional demographics
IAPT Demonstration

- Automatic data usage
- Flexible parameter change using GUI
- Full implementation of performance measurement
- Case study test run: comparison between
 - AirBART Connector using bus
 - Oakland Airport Connector using BART
Next Steps

- IAPT implementation refinement
- Documentation for IAPT development
- Policy recommendations
- Workshop
- Final Report
Next Steps: Policy Recommendations

• Key policy issues in airport ground access
 – Funding intermodal connections
 – Promoting use of high-occupancy modes
 – Measuring and monitoring system performance
 – Role of airport ground access in regional transportation planning
 – Interregional (cities or counties) jurisdictional issues

• Project selection and implementation
 – Measuring cost-effectiveness of alternative projects and strategies
 – Contribution of proposed projects to regional transportation goals
 – Institutional roles and responsibilities
 • Caltrans, MPOs, transit agencies, airport authorities, FTA, FAA, FHWA