Agenda

- Introductions
 - Institute of Transportation Studies

- Connectivity for & Automation of Traffic Control

- California PATH Program

- California Trends – Implications & Opportunities for EV
University of California

The University of California opened its doors in 1869 with just 10 faculty members and 38 students; Now:

- 10 campuses
- 5 medical centers
- 3 national laboratories
- 150 academic disciplines
- 600 graduate degree programs
- 233,000 students
- 190,000 employees
- 1.7 million living alumni
- 60 Nobel laureates
Organization of ITS’ centers

Active centers at ITS (Dec. 2015)
Autonomous, Connected, Connected Automated

Safe and Connected Automation

- Safe
 - Meets requirements for functional safety, cybersecurity, and system performance
- Connectivity
 - Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

Autonomous Automated Vehicle
Operates in isolation from other vehicles using internal sensors

Connected Vehicle
Communicates with nearby vehicles and infrastructure
Not automated (level 0)

Connected Automated Vehicle
Leverages autonomous automated and connected vehicles
Connectivity

What is DSRC

- Basic safety messages sent out every 1/10 seconds.
- All messages carry a standard glob: values for pre-defined vehicle trajectory and operational data.
- Cars process data and warn driver.
- Equipment integrated into vehicle

Photo Credit: US Dept. of Transportation
Connectivity

- Vehicle to Vehicle and Vehicle to Infrastructure Connectivity (DSRC & Mobile Phone Network) will enable messaging directly to a vehicle
 - Improve Safety
 - Pedestrian
 - Vehicle
 - Enable advanced ICM
 - Dynamic Highway Management Control
 - Urban and Arterial Traffic management
 - Incident Management
 - Improved Productivity for Freight and Transit
 - Reduced vehicle energy consumption and emissions.
California PATH

- Strong emphasis on Automation and Connected Vehicles for 25+ years → over 600 labor years of PATH effort
 - Experimental verification on full-scale vehicles (20+ passenger cars, 7 heavy trucks, 6 transit buses, 1 snowblower)

- First V2V cooperative collision warning experiments in 2004-5

- First public DSRC installations in U.S. in 2005

- Full-Scale DSRC test facility on El Camino Real since 2006

- Consistent work on DSRC standards development

- Strong media attention on a variety of projects
 - 200 media appearances, many interviews, and 3 press conferences associated with Mobile Millennium and Mobile Century
 - One media interview of staff per week on ITS efforts

- Leading the largest national ICM effort
NAHSC Automated Platoon Demo

- PATH led complex system development and integration activity, with industrial partners
- Landmark event in 1997, raising awareness of automation potential
- Demo rides for ~1000 visitors, overwhelmingly positive responses
- Showed technological and user acceptance potential
Automated Truck Platooning: 2003 -2011

- Developed and tested 2- and 3-truck platoons under automatic spacing control at gaps from 3 m to 10 m
- All hardware and software implementation by PATH, without industry help
- Fuel savings of 10 -15% measured
California Connected Vehicle Test Sites

- First field installations of DSRC wireless in the U.S. (2005)
- Test site for transportation researchers and automotive industry labs – developed, maintained, and managed by PATH
- Upgraded as part of national test bed network – 11 consecutive signalized intersections on SR 82, fully instrumented facility at BGC
VAA Project at UCB-PATH

- LTD, Eugene Oregon
 - 2.5 miles of single/double dedicated ROW
 - One 60ft New Flyer BRT bus
 - Functions to be tested:
 - Lane guidance for on dedicated BRT lane
 - Precision docking

- Full range of VAA applications for BRT
 - Highway and urban BRT applications
 - Precision docking and guidance
 - Very low to highway speed (65 mph)
Cooperative Adaptive Cruise Control (CACC) (Since 2002)

- 3 generations of design, sponsored by Caltrans, FHWA and Nissan
- First-generation system showed driver acceptance of short gap following (0.6 s)
- Second generation showed string stability
- Traffic simulations showed lane capacity doubling potential
- Third generation for STOL Laboratory - 2015
- Current EAR project on CACC string strategies
Multi-Modal Intelligent Traffic Signal Systems (MMITSS)

- MMITSS is the next generation of traffic signal systems
- Partners include: U of Arizona, California PATH, Savari Networks, Econolite, Volvo Technology
- Sponsors through Pooled Fund
 - Virginia DOT, California DOT,
 - Maricopa County DOT, Florida DOT,
 - Michigan DOT
- Suite of five CV Applications
 - Intelligent Traffic Signal Systems (ISIG)
 - Transit Signal Priority (TSP)
 - Mobile Accessible Pedestrian Signal System (PED-SIG)
 - Emergency Vehicle Preemption (PREEMPT)
 - Freight Signal Priority (FSP)
USDOT/FHWA Exploratory Advanced Research

- **ECO signal operations with BMW, UCI**
 - In-vehicle driver speed advisory for minimum fuel consumption
 - Integration of adaptive signal priority with driver advisory

- **Field testing at RFS**
 - Use SAE J2735 over cellular (4G/LTE)
 - Speed recommendation is calculated based on SPaT
 - Tested with 4 scenarios
 - Uninformed driver
 - Informed driver
 - Uninformed driver with signal priority
 - Informed driver with signal priority

- **Field Testing at California testbed**
 - Ongoing
 - Interaction with the leading vehicle
 - Uncertainties in phase time remaining
 - Queue discharging time
Hyundai Smart Eco-Driving

- **Smart Eco-Driving in collaboration with Hyundai**
 - Incorporating:
 - Traffic speed, signal timing, and roadway gradient (preview)
 - Smart cruise control (feedback regulation)
 - Powertrain characteristics (optimization)
 - Driver Assistance (manual control) or semi-automated (assisted control)
Vehicle Speed Limits (VSL)/Speed Harmonization

- Selecting highway speed to maximize throughput at bottleneck
- V2I probe vehicle data collection
- I2V target speed selection – as ACC set speed
- Simulations of traffic impacts, then field tested near Washington DC – FHWA STOL Laboratory, under Leidos
Connected Corridors –
Nation’s Largest ICM Effort

- Assist Caltrans in defining “next generation” Integrated Corridor Management – Built upon ICM work conducted in San Diego, Dallas, etc.

- Work with Los Angeles agencies to initiate and operate a pilot ICM corridor on Interstate 210

- PATH’s research focus is on real time decision support. The algorithms, models, sensors, data analytics and practical operational scenarios
California Trends

- Population Growth – 33% over the next 30 years
- Economic growth – 115% over the next 30 years
- Increased Goods Movement – 45% over the next 30 years
- Greenhouse Gas Reduction (40% by 2030, 80% by 2050)
- Combat (arrest, reverse) Urban Sprawl (also known as SCS)
Public Policy Goals

- Reduction in Criteria Pollutants - Ground Level Ozone Reduction 2015 (Federal CAA) (NOx reduction 2023) & Reduction in PM2.5 (24-hr Std. 35 mg/CM)

- GHG Reduction {40%, 80%} (AB32, EO S-3-05, EO B-30-15, SB350, SB391, SB375, SB743)

- Sustainable Communities {80% CO2 reduction} (SB375, SB743)

- Increase in Mass Transit Use (SB9, SB375, SB743)

- Transportation & CEQA (impact can not include Congestion SB743)

- Sustainable Freight (EO B-32-15)

- Transportation Electrification (AB32, SB1275 [Charge Ahead CA], SB350)

- Renewable Energy Mandates {20%, 50%} (AB32, SB350)
Brave New World is Upon us

- **Caltrans and California MPOs are facing their biggest mission challenge since the 1950s.**
 - Growth in population, the economy and goods movement will continue to undermine safety, mobility and environmental goals.
 - California Public policy has set aggressive goals for emissions reduction (criteria pollutants and greenhouse gases).
 - Metropolitan planning organizations have been placed at the nexus of transportation, land use and emission reduction goals.
 - HOWEVER, communication, connectivity, data analytics, vehicle automation, Traffic Control and EVs will bring new efficiencies to the transportation system and enable State DOTs to unlock the potential of their System to address challenges.
Long Range Transportation Plan

- www.transitsandiegio.org
In 2010, ARB established these targets for 2020 and 2035 for each region covered by one of the State's metropolitan planning organizations (MPO).

Approved Regional Greenhouse Gas Emission Reduction Targets

<table>
<thead>
<tr>
<th>MPO Region</th>
<th>Targets *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020</td>
</tr>
<tr>
<td>SCAG</td>
<td>-8</td>
</tr>
<tr>
<td>MTC</td>
<td>-7</td>
</tr>
<tr>
<td>SANDAG</td>
<td>-7</td>
</tr>
<tr>
<td>SACOG</td>
<td>-7</td>
</tr>
<tr>
<td>8 San Joaquin Valley MPOs</td>
<td>-5</td>
</tr>
<tr>
<td>6 Other MPOs</td>
<td>-7</td>
</tr>
<tr>
<td>Tahoe</td>
<td>0</td>
</tr>
<tr>
<td>Shasta</td>
<td>0</td>
</tr>
<tr>
<td>Butte</td>
<td>+1</td>
</tr>
<tr>
<td>San Luis Obispo</td>
<td>-8</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>0</td>
</tr>
<tr>
<td>Monterey Bay</td>
<td>0</td>
</tr>
</tbody>
</table>

* Targets are expressed as percent change in per capita greenhouse gas emissions relative to 2005.
Emissions –Fleet, SR60, Normalized

Figure 4. Possible use of traffic operation strategies in reducing on-road CO₂ emission
Approaches to Minimizing Energy & Emissions

- More efficient vehicles
- Alternative fuels
- Decrease total amount of Driving
- Improve Transportation Efficiency
 - Intelligent Transportation Systems
 - Advanced Vehicle Control & Safety Systems (eliminate accidents, smooth traffic flow)
 - Advanced Transportation systems (promote efficient operation, eliminate congestion)
 - Advanced Transportation Information Systems (reduce driving, promote efficiency and manage demand)
AERIS Operational Scenarios

ECO-SIGNAL OPERATIONS
Uses connected vehicle technologies to decrease fuel consumption and decrease GHG and criteria air pollutant emissions by reducing idling, the number of stops, unnecessary accelerations and decelerations as well as improving traffic flow at signalized intersections.

ECO-LANES
Dedicated freeway lanes – similar to HOV lanes – optimized for the environment that encourage use from vehicles operating in eco-friendly ways. The lanes may support variable speed limits, eco-cooperative adaptive cruise control (ECACC) and vehicle platooning applications, and wireless inductive/resonance charging infrastructure embedded in the roadway.

LOW EMISSIONS ZONES
Geographically defined areas that seek to incentivize “green transportation choices” or restrict specific categories of high-polluting vehicles from entering the zone to improve the air quality within the geographic area. Geo-fencing the boundaries allows the possibility for these areas to be responsive to real-time traffic and environmental conditions.

ECO-TRAVELER INFORMATION
Applications that enable development of new, advanced traveler information applications through integrated, multisource, multimodal data. An open data/open source approach is intended to spur innovation and environmental traveler information applications. Eco-Traveler Information applications include applications that assist users with finding charging stations for alternative fuel vehicles, parking applications, and eco-routing applications.

ECO-INTEGRATED CORRIDOR MANAGEMENT
Considers partnering among operators of various surface transportation agencies to treat travel corridors as an integrated asset, coordinating their operations simultaneously with a focus on decreasing fuel consumption and emissions.
Eco-Signal Operations

Transformative Concept | Eco-Signal Operations

- advanced signal control
- I2V-based communications
- I2V & V2I communications
- network equilibration

![Diagram of Eco-Signal Operations]

U.S. Department of Transportation
System Activities:

- intelligent speed adaptation
- speed harmonization
- variable Speed Limits
- dynamic eco-driving
- platooning
- cooperative cruise control
Connected Eco-Driving Experiment

Vehicle automation could provide even better results.

<table>
<thead>
<tr>
<th>Energy/Emissions</th>
<th>Non Eco-Driving</th>
<th>Eco-Driving</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (g)</td>
<td>1766</td>
<td>1534</td>
<td>-13%</td>
</tr>
<tr>
<td>CO2 (g)</td>
<td>5439</td>
<td>4781</td>
<td>-12%</td>
</tr>
<tr>
<td>CO (g)</td>
<td>97.01</td>
<td>50.47</td>
<td>-48%</td>
</tr>
<tr>
<td>HC (g)</td>
<td>3.20</td>
<td>1.90</td>
<td>-41%</td>
</tr>
<tr>
<td>NOx (g)</td>
<td>6.28</td>
<td>3.97</td>
<td>-37%</td>
</tr>
<tr>
<td>Travel time (min)</td>
<td>38.9</td>
<td>41.2</td>
<td>+6%</td>
</tr>
</tbody>
</table>

Preliminary Results

- **ITS goals and strategies of improving safety and improving traffic performance often reduce energy consumption and CO₂ emissions**
 - Each Strategy potentially 5-15%, multiple strategies increase savings
 - Reduced benefits with increased congestion
 - Less benefit for corridor with existing coordinated timing
 - Benefits dependent on DSRC penetration rates
 - No benefit below 20% connected vehicle penetration levels
 - Increase significantly from 20% to 50% connected vehicle penetration levels
 - Remain consistent between 50% and 80% connected vehicle penetration levels
 - Increase significantly from 80% to 100% connected vehicle penetration levels
According to the State Alternative Fuels Plan analysis (by CEC, ARB) vehicle electrification results in approximately 70 percent fewer greenhouse gases emitted, over 85 percent fewer ozone-forming air pollutants emitted … These reductions will become larger as renewable generation increases.

- **Potential Applications**
 - Eco Signals
 - Eco Lanes
 - Eco Low Emission Zones
 - Eco ICM
 - Transit Support
Ground Level Ozone

Challenge

- 2015 Standard is 70ppb, down from 75ppb (2008)

CV Tactics

- Traffic Smoothing Incident Management
- Advanced ICM
 - Eco Applications
- Transit
 - First/Last Mile Automated & Connected EV
- Sustainable Freight
- Transportation Electrification
GHG Reduction

Challenge

Tactics

- Highway
 - Platooning
 - Speed / Access Control
 - Eco-ICM
- Arterial
 - Intelligent Signals
 - Priority & Eco Applications
- Transit with Automated Connected EV for first/last mile
- Transportation Electrification
Traffic Congestion

EV Opportunity

Annual California Impact

- **TTI:**
 - 437 Million gallons of fuel
 - ... 8.5 Billion Pounds CO2
- 1.2 Million Hours of delay
- $27 Billion Cost
- 54% Highway; 46% Arterial

Figure 4. Possible use of traffic operation strategies in reducing on-road CO₂ emission
EV Opportunity

- Near Term: Quantify the benefits of combining EV and ITS for SOV
 - Need: Corridor Level Benefits (ozone, GHG) Quantification
 - Need: Stakeholder Collaboration
- Near to Mid Term: extend ITS Eco-applications to include EV
- Mid Term: Demonstrate EV ITS Eco-applications (ARB& CT 16/17)

- **Shared, Connected and Automated electric vehicles operating in our cities by 2030**
 - Displacing SOVs on our city streets and highways, Responsive to user demand (via traveler information), extending transit
 - Long Term Needs
 - concept development, benefits quantification for congestion and emissions reduction, demonstration and verification