

CAV 7A.3.1.2 CACC Development for Cars with Different Powertrains

Carlos Flores¹, Xiao-Yun Lu^{1,2}, John Spring¹, David Nelson¹, Eric Rask³, Simeon Iliev³

¹ University of California Berkeley
 ² Lawrence Berkeley National Laboratory
 ³ Argonne National Laboratory

Program Manager: David Anderson,

Energy Efficient Mobility Systems (EEMS) Vehicle Technologies Office U.S. Department of Energy

ENERGY Energy Efficiency & Renewable Energy

Project Manager: Erin Boyd,

OUTLINE

- Research scope / objectives
- Generic architecture
- · Low level speed tracking
- High level gap regulation
- Control design
- Leader results
- CACC following results
- Conclusions

1

• Extend CACC capabilities and its positive impact

- Extend CACC capabilities and its positive impact
- Investigate challenges of heterogeneous CACC strings

- Extend CACC capabilities and its positive impact
- Investigate challenges of heterogeneous CACC strings
- Design a generic architecture for all types of vehicle dynamics

- Extend CACC capabilities and its positive impact
- Investigate challenges of heterogeneous CACC strings
- Design a generic architecture for all types of vehicle dynamics
- Yield a system configurable for the excepted performance

- Extend CACC capabilities and its positive impact
- Investigate challenges of heterogeneous CACC strings
- Design a generic architecture for all types of vehicle dynamics
- Yield a system configurable for the excepted performance
- Study best string ordering methodology

- Investigate challenges of heterogeneous CACC strings
- Design a generic architecture for all types of vehicle dynamics
- Yield a system configurable for the excepted performance
- Study best string ordering methodology
- Enhance handling of desired gap changes / cutting in or out

HMI Reference trajectory V2V network Actuators High-level Low-level command control layer control layer Vehicle state Proprioceptive Target perception sensors

GENERIC ARCHITECTURE

Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection

Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection

Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection

Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection

Reference speed tracking structure based on actuators mapping

Controller design requirements:

- Fastest response bandwidth •
- Damped / no overshoot ۲
- Stable and robust speed tracking

Low level response parameterized with:

- Response bandwidth
- **Damping factor**
- Acceleration boundaries •

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

- State machine for highway or test track driving
- Closed-loop transitions remaining on acceleration and jerk boundaries
- Awareness of comfort-performance tradeoff

U.S. DEPARTMENT OF ENERGY

SMARTM

Human Machine Interface for system status and control interaction

- Leader vehicle ACC structure
- Spacing policy based on time gap

CACC control structure

CONTROL DESIGN

Feedback controller

- Corrects following gap error
- Rejects disturbances and model uncertainties
- Is designed as an LPV structure:
 - Target time gap
 - Desired performance vs. comfort tradeoff
- Stabilizes loop and improves string stability

Feedforward controller

- Improves tracking performance significantly
- Filters V2V signals received
- Varies with topology—e.g. preceding-only, leader-predecessor.
- Uses subject and preceding vehicle dynamics model

CONTROL DESIGN

• Dynamics-constrained time gap management system

$$V_{eq} = 25 m/s$$

$$V_{min} = 12 m/s$$

$$A_{max} = -1 m/s^2$$

$$J_{max} = -0.8 m/s^3$$

■ $h = 0.9s \rightarrow 1.8s$
■ $h = 0.6s \rightarrow 1.8s$
■ $h = 0.9s \rightarrow 1.4s$
■ $h = 0.6s \rightarrow 1.4s$

CONTROL DESIGN

• Dynamics-constrained time gap management system

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

LEADER CAV HIGHWAY TESTS

ACC car-following Varying target time gap

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

LEADER CAV HIGHWAY TESTS

LEADER CAV HIGHWAY TESTS

ACC car-following Testing the system cut-in handling

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

- CACC system tested in Crows Landing tracks
- Scenarios tested:
 - Speed steps with different rates
 - Smooth speed steps
 - Multisine profile for string stability study
 - Cutting in vehicle
 - Emergency braking

U.S. DEPARTMENT OF ENERGY

SMARTMO

U.S. DEPARTMENT OF ENERGY

SMART

Summary

- Low level speed tracking based on actuators mapping
- Architecture usable both in highway and test tracks (higher performance)
- ACC system handles time gap changes and cut in/out vehicles
- HMI for online supervision and management of the control architecture
- Feedforward/feedback structure for heteregeneous CACC strings
- Developed CACC demonstrated for short time gaps

Conclusions

- CACC of electric, hybrid and ICE vehicles is feasible
- Good performance at short time gaps requires accurate modelling
- Aim short spectral distance between low level responses
- Increase vehicles' dynamics capabilities upstream
- Cut-in vehicles handled without harming comfort
- Leader-predecessor topology enhances string stability

U.S. DEPARTMENT OF ENERGY SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

U.S. DEPARTMENT OF ENERGY Renewable Energy ((•))

Argonne

