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RESEARCH SCOPE / OBJECTIVES

• Extend CACC capabilities and its positive impact

• Investigate challenges of heterogeneous CACC strings

• Design a generic architecture for all types of vehicle dynamics

• Yield a system configurable for the excepted performance

• Study best string ordering methodology

• Enhance handling of desired gap changes / cutting in or out
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LOW LEVEL SPEED TRACKING
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Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection
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Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection
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Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection
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Reference speed tracking structure based on actuators mapping

Controller++
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Low level response parameterized with:

• Response bandwidth

• Damping factor

• Acceleration boundaries

Controller design requirements:

• Fastest response bandwidth

• Damped / no overshoot

• Stable and robust speed tracking

LOW LEVEL SPEED TRACKING
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• State machine for highway or test track driving

• Closed-loop transitions remaining on acceleration and jerk boundaries

• Awareness of comfort-performance tradeoff

HIGH LEVEL GAP REGULATION
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Human Machine Interface for system status and control interaction

HIGH LEVEL GAP REGULATION
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• Leader vehicle ACC structure

• Spacing policy based on time gap
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CACC control structure
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Highway CACC

Performance CACC Variable time gap [Flores et al., 2017]

Constant time gap + standstill distance



CONTROL DESIGN

Feedback controller
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Feedforward controller

• Corrects following gap error

• Rejects disturbances and model 

uncertainties

• Is designed as an LPV structure:

• Target time gap

• Desired performance vs. comfort tradeoff

• Stabilizes loop and improves string stability

• Improves tracking performance significantly

• Filters V2V signals received

• Varies with topology—e.g. preceding-only, 

leader-predecessor.

• Uses subject and preceding vehicle 

dynamics model



CONTROL DESIGN

• Dynamics-constrained time gap management system
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LEADER CAV HIGHWAY TESTS
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LEADER CAV HIGHWAY TESTS
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ACC car-following

Testing the system
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CACC FOLLOWERS TESTS

• CACC system tested in Crows Landing tracks
• Scenarios tested:

• Speed steps with different rates
• Smooth speed steps
• Multisine profile for string stability study
• Cutting in vehicle
• Emergency braking
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CACC FOLLOWERS TESTS

Speed steps of
a=±2.0 m/s²
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CACC FOLLOWERS TESTS

Multisine
acceleration profile
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CACC FOLLOWERS TESTS
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CACC FOLLOWERS TESTS
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Cutting-in vehicle
within a CACC string
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CACC FOLLOWERS TESTS
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Cutting-in vehicle within a CACC string



Summary
• Low level speed tracking based on actuators mapping

• Architecture usable both in highway and test tracks (higher performance)

• ACC system handles time gap changes and cut in/out vehicles

• HMI for online supervision and management of the control architecture

• Feedforward/feedback structure for heteregeneous CACC strings

• Developed CACC demonstrated for short time gaps
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Conclusions
• CACC of electric, hybrid and ICE vehicles is feasible

• Good performance at short time gaps requires accurate modelling

• Aim short spectral distance between low level responses

• Increase vehicles’ dynamics capabilities upstream

• Cut-in vehicles handled without harming comfort

• Leader-predecessor topology enhances string stability
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Thank you.


