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» Generic architecture

* Low level speed tracking

« High level gap regulation

« Control design

» Leader results

« CACC following results

» Conclusions
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« Extend CACC capabilities and its positive impact
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« Investigate challenges of heterogeneous CACC strings
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« Design a generic architecture for all types of vehicle dynamics
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* Yield a system configurable for the excepted performance

EEEEEEEEEEEE Energy Efficiency &

u.s.
ENERGY Renewable Energy



RESEARCH SCOPE / OBJECTIVES

Lj® U DEPARTMENT OF ENERGY
- <% SMARTMOBILITY
, Syst d Modeling for Research in i

« Study best string ordering methodology
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RESEARCH SCOPE / OBJECTIVES

« Enhance handling of desired gap changes / cutting in or out
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GENERIC ARCHITECTURE
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LOW LEVEL SPEED TRACKING

Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection

2017 Toyota Prius Prime Acceleration Envelope
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LOW LEVEL SPEED TRACKING (g

Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection
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Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection
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LOW LEVEL SPEED TRACKING o o

Actuators are mapped on a surface: Acceleration vs. Speed vs. Pedal deflection
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LOW LEVEL SPEED TRACKING

Reference speed tracking structure based on actuators mapping
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LOW LEVEL SPEED TRACKING

Controller design requirements: il
» Fastest response bandwidth 1
 Damped / no overshoot

- Stable and robust speed tracking «s

"
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HIGH LEVEL GAP REGULATION

 State machine for highway or test track driving
 Closed-loop transitions remaining on acceleration and jerk boundaries

« Awareness of comfort-performance tradeoff

Reduce speed if

Tyap < dist < 2Tyqy
Target vehicle lost DSRC link
or beyond horizon interrupted
CC ACC CACC
>
Target vehicle DSRC link established
tracked in horizon and target vehicle
tracked
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Human Machine Interface for system status and control interaction
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HIGH LEVEL GAP REGULATION

» Leader vehicle ACC structure

» Spacing policy based on time gap

Desired CC.
speed
ACC Ref Low level control
Gap error ACC FB. action + ~ Ref. speed r Speed speed
feedback J \ L decision “
Measured
distance + Long. speed

Desired distance ( ]

Vehicle trajectory

LSpacing policyj
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HIGH LEVEL GAP REGULATION

CACC control structure
V2V information Feedforward
_________________ controller
. CACC Low level control
Measured +,~ Gaperror CACC FB. action +-N Ref. speed | _
distance - L feedback J O L “
Desired distance ( ) Vehicle trajectory

LSpacing policyj

Highway CACC — Constant time gap + standstill distance

EEEEEEEEEEEE Performance CACC —— Variable time gap [Flores et al., 2017]
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Feedback controller

Corrects following gap error
Rejects disturbances and model
uncertainties
|s designed as an LPV structure:
« Target time gap
* Desired performance vs. comfort tradeoff

Stabilizes loop and improves string stability
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Feedforward controller

Improves tracking performance significantly
Filters V2V signals received

Varies with topology—e.g. preceding-only,
leader-predecessor.

Uses subject and preceding vehicle

dynamics model
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 Dynamics-constrained time gap management system
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CONTROL DESIGN
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 Dynamics-constrained time gap management system
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LEADER CAV HIGHWAY TESTS

35 T T I I
. Subject vehicle speed
ACC ca I’-fO||OWIng 30 Target vehicle speed
o
Varying target time gap E25
B
@ 20
W
156
10 | | | | |
] 50 100 150 200 250 a0o
Time (s)
1.8 T T T T
Target time gap
1.6 Measured time gap | |

0 50 100 150 200 230 300

Time (s)
U.S. DEPARTMENT OF Energy Efﬁciency &

ENERGY Renewable Energy 1 3



%) 77 "us DEPARTMENT OF ENERGY

LEADER CAV HIGHWAY TESTS :@;EMRTMQB'L'TY

ACC car-following

Varying target time gap
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LEADER CAV HIGHWAY TESTS
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* CACC system tested in Crows Landing tracks

e Scenarios tested:
» Speed steps with different rates

Smooth speed steps

Multisine profile for string stability study

Cutting in vehicle

Emergency braking
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CACC FOLLOWERS TESTS
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CACC FOLLOWERS TESTS

Multisine
acceleration profile
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Multisine
acceleration profile

Variable time gap
h = 0.05s = 0.2s
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Multisine
acceleration profile

Variable time gap
h = 0.05s = 0.2s
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CACC FOLLOWERS TESTS

Cutting-in vehicle ol /\ :Twi/\
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CACC FOLLOWERS TESTS

©
==L
@ ‘Syslems and

EEEEEEEEEEEEEEEEEEEEE

Modeling

Cutting-in vehicle within a CACC string
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Summary
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Low level speed tracking based on actuators mapping

Architecture usable both in highway and test tracks (higher performance)
ACC system handles time gap changes and cut in/out vehicles

HMI for online supervision and management of the control architecture
Feedforward/feedback structure for heteregeneous CACC strings

Developed CACC demonstrated for short time gaps
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Conclusions

CACC of electric, hybrid and ICE vehicles is feasible

Good performance at short time gaps requires accurate modelling

Aim short spectral distance between low level responses

Increase vehicles’ dynamics capabilities upstream

Cut-in vehicles handled without harming comfort

Leader-predecessor topology enhances string stability

EEEEEEEEEEEE Energy Efficiency &

ENERGY Renewable Energy 1 9



EEEEEEEEEE

ENERGY

Energy Efficiency &
Renewable Energy

AP
. .
= -
e .
i (3
o ® :
- ]
- b A
». ¢
~ .
.

1ﬁﬁq;2%

U S. DEPARTMENT OF ENERGY

SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

Thank you.

~
A
S | | S ¥ Ribr
L}
DGE
Argggn;\em% BERKELEY LAR Idaho National Loboratory s"‘ N R E L =

National Laboratory




