Managed Lanes: Challenges and Opportunities for Connected and Automated Vehicles (CAVs)

Alex Skabardonis
University of California, Berkeley, USA

Costa Navarino, Messinia, Greece
29-31 May 2019
Background: Automated Driving in Managed Lanes

Automated Highway Systems (AHS) Demo ‘97
I-15 Managed Lanes, San Diego

- Automated Check-in/Check-out
- Lateral and Longitudinal Controls
- Automated merging/diverging
- Malfunction Management & Analysis
Operation of Connected Vehicles (CACC)

Field Tests

ACC: Speeds/Accelerations *(Not Connected)*

CACC: Speeds/Accelerations *(Connected)*
Lane Capacity vs. CACC Market Penetration

Basic Freeway Section

Merging Section
Freeway Speeds vs. CACC Market Penetration

SR-99 Freeway CA
Existing Volumes
4 am - 12 noon
CAVs in Managed Lanes

- Designation of selected lanes as CAVs only lanes
 - market penetration (MP)
 - Operating conditions

- Higher lane capacities on CAV only lanes
 - Coordination with merging traffic

- Exclusion of manually driven vehicles improves safety and facilitates testing of automation options

- Higher lane throughput by CAVs offers potential for user discounts

Introduction HOV I-10, Los Angeles, 1974
Impacts of Operational Strategies on Freeway Lane Capacity with CACC

Managed Lanes (ML) strategy
Works best:
- 40% CACC with 1 ML
- 60% CACC with 2 ML
- 80% CACC with 3 ML

VAD: Vehicles Awareness Device, DLC: Discretionary Lane Changing
Modeling CAVs: Challenges and Opportunities

- **Existing Traffic Models Luck Features to Account for Changes due to CAVs**
 - Simplified assumptions on CAVs car-following, lane changing models
 - Car-following model for mixed traffic
 - Interactions with manual driven vehicles
 - Macroscopic traffic flow relationships

- **New Models Needed to Leverage Technological capabilities, and Capture Emergent Interactions**
 - Operational and communication protocols
 - Modeling platoon streams for CAVs
 - Platoon stability
 - Impacts of latency