AVS2018

Integrating Freeway and Arterial Traffic Control under Vehicle-to-Infrastructure Communications Environment

Alexander Skabardonis, David Kan PATH UC Berkeley July 9, 2018, San Francisco, CA

Problem Statement

- Ramp metering: common strategy to manage freeway congestion and prevent "capacity drop"¹
- Independent signal control: cause of queue spillback

¹ Cassidy and Rudjanakanoknad, 2005; Zhang and Levinson, 2010; Kim and Cassidy, 2012

Queue Override

- Prevents on-ramp queue spillback
 - Suspends or adjusts ramp metering
 - Freeway congestion/capacity drop ~ 10%

Vehicle to Infrastructure Communication

- MAINUN - -60 67 **(1**)
- Vehicles can send realtime on-ramp queue length data to the traffic signal

- Traffic signals can adjust the cycle length in real-time
 - Avoid long platoons entering the freeway on-ramp from the nearby arterials
 - Prevent queue spillback

Proposed Signal Control Strategy (1)

- Ramp metering control unchanged
- Integrate ramp metering controllers
- Reduced and variable cycle length
- Mitigate both on-ramp and arterial spillback
- Example signalized intersection near freeway on-ramp

Proposed Signal Control Strategy (2)

On-ramp excess accumulation

Proposed Signal Control Strategy (3)

- Phases 1 and 2: shorter green times
- Clear on-ramp queues in phase 3

Proposed Signal Control Strategy (4)

 On-ramp residual excess accumulation can be determined by tracking vehicles entering and leaving the on-ramp:

$$Q(0) = 0$$

 $Q(1) = Q(0) + A(1) - D(1)$
:
 $Q(t) = Q(t - 1) + A(t) - D(t)$

• Maintain the same green time distribution:

$$g_1 = \frac{y_1}{Y} \cdot (C - 3l)$$
$$g_2 = \frac{y_2}{Y} \cdot (C - 3l)$$

Proposed Signal Control Strategy (5)

• Cycle length upper limit:

$$C \leq \frac{[Q_r - Q(t) + r(t) \cdot 2l] \cdot Y + 4l \cdot [\sum_{i=1,2} s_i \beta_i y_i - \sum_{i=1,2} r(t) y_i]}{[\sum_{i=1,2} s_i \beta_i y_i - \sum_{i=1,2} r(t) y_i]}$$

- Updated every cycle
- Does not provide progression/maximum bandwidth

Simulation Test

- Test site: NB I-680/Capitol Ave Corridor, San Jose, CA
- Recurrent bottleneck AM peak (7:00AM – 9:30AM)
- Aimsun Model
 - Enhanced driving behavior model ¹
- Calibrated to replicate field data
- Before: metering <u>with</u> queue override, <u>long</u> cycle lengths
- After: metering <u>without</u> queue override, <u>short</u> cycle lengths
- 20 replications

Simulation Results: Test Corridor (1)

Simulation Results: Test Corridor (2)

I. Freeway

	Before		After		% Difference			
Freeway Mainline								
	Total Delay (veh-hr)	Total Distance Traveled (veh-mile)	Total Delay (veh-hr)	Total Distance Traveled (veh-mile)	Change in Total Delay	Change in Total Distance Traveled		
I-680 NB	833.41	43104.13	740.64	44792.95	-11.13%	3.92%		

II. Arterial

Average Delay on Main Parallel Arterial (min/veh)						
Capitol Ave NB	8.63	10.51	21.84%			
Capitol Ave SB	5.72	5.91	3.33%			
Average Delay of Cross Street (sec/veh)						
Alum Rock WB	48.05	47.33	-1.43%			
Alum Rock EB	37.27	37.82	1.47%			
McKee WB	56.76	52.34	-7.79%			
McKee EB	28.92	16.51	-42.91%			
Berryessa WB	47.27	39.26	-16.73%			
Berryessa EB	50.50	37.55	-34.48%			

III. Total System

	Total Delay (veh-hr)	Total Delay (veh-hr)	Change in Total Delay
Freeway & Arterial	2881.37	2727.19	-5.65%

Summary

- Vehicle-to-infrastructure communication allows for traffic signals to adjust cycle lengths based on onramp queue length
- Improved arterial signal timing can reduce arterial and freeway delay
- Sensitivity analysis: similar improvement when peak (7:30 AM 8:30 AM) demand increases by 5-10%.