IEEE: Models and Technologies for ITS

Capacity and Delay Analysis of Arterials with Mixed Autonomous and HumanDriven Vehicles

Alexander Skabardonis

Naples, June 26, 2017

Introduction

- Goal:
o Assessment of performance of mixed stream of humandriven (N) and autonomous vehicles (AV) at signalized intersections
MOEs: capacity, and delay

Implications for Operation of Highway Facilities

- Issues:
o AV Penetration Rate
o Differences in driving behaviour of (N) and (AV)
o Complicated dynamics of car following situations

N-AV

Headway Analysis (1)

- Given the penetration rate of $\mathbf{A V}, 0 \leq p \leq 1$
- The expected headway of a mixed platoon depends on the relative locations of AV in the platoon
- Lower Bound Vehicle Headway

$\overline{\hat{h}}=\frac{\left(n_{\mathrm{N}}-1\right) \cdot h_{\mathrm{N}-\mathrm{N}}+\left(n_{\mathrm{AV}}-1\right) \cdot h_{\mathrm{AV}-\mathrm{AV}}+h_{\mathrm{N}-\mathrm{AV}}}{n-1}$

Headway Analysis (2)

Upper Bound of Vehicle Headway

Headway Analysis (3)

Expected Vehicle Headway
$\bar{h}=\sum_{k=0}^{n} \bar{h}_{k} \cdot \mathcal{P}(X=k) ; \quad \mathcal{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

- $n=$ number of vehicles
- $k=$ number of $A V$ vehicles
- $p=$ penetration rate

Example:

$n=4$ [veh]; $p=0.25$
Possible scenarios:

- $k=0$ (only N)
- $k=1$
- $k=2$
- $k=3$
$\bullet k=4$ (only AV)

Headway Analysis (3)

Expected Vehicle Headway - Example (cont.)

$$
h_{\mathrm{N}-\mathrm{N}}=1.8[s] ; h_{\mathrm{AV}-\mathrm{AV}}=0.9[s] ; h_{\mathrm{N}-\mathrm{AV}}=1.2[s] ; h_{\mathrm{AV}-\mathrm{N}}=1.8[s]
$$

$$
k=1 \quad C_{n}^{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{4!}{1!3!}=4 \text { combinations }
$$

c)
d)

$$
\bar{h}_{1}=\frac{6 h_{\mathrm{N}-\mathrm{N}}+3 h_{\mathrm{AV}-\mathrm{N}}+3 h_{\mathrm{N}-\mathrm{AV}}}{(n-1)} \times \frac{1}{\mathrm{C}_{n}^{1}}=1.65[s]
$$

Headway Analysis-Summary

- Expected, upper and lower bounds of mixed flow headway
- validation of theoretically obtained headways using microsimulation

Average headway of mixed traffic VS penetration rate of AV

Delay at an Arterial Signalized Link (1)

Assumptions:

oTwo lane signalized arterial link
oApply shockwave theory
oFD parameters (capacity, critical density jam density) for each flow condition

Scenarios

i.mixed lanes
ii.dedicated lanes for AV and N
iii.one mixed lane and one AV dedicated lane
iv.one mixed lane and one N dedicated lane

Delay at an Arterial Signalized Link (2)

i. dedicated lanes for AV and \mathbf{N}

Dedicated for Normal Cars

Dedicated for Autonomous

Delay at an Arterial Signalized Link (3)

i. dedicated lanes for AV and \mathbf{N}

Dedicated for Normal Cars

Dedicated for Autonomous

Delay at an Arterial Signalized Link (4)

i. dedicated lanes for AV and \mathbf{N} (cont..)

$$
\begin{aligned}
& D_{i}=0.5 R_{i}^{2} \cdot\left(\frac{w_{i} \cdot u_{i}}{w_{i}-u_{i}}\right) \\
& D_{\mathrm{T}}=\sum_{i=1}^{2} 0.5 R_{i}^{2} \cdot\left(\frac{\frac{c_{i}}{k_{i}^{j}-\frac{c_{i}}{u_{i}^{t}}} \cdot \frac{q_{i}}{k_{i}^{j}-\frac{q_{i}}{u_{i}^{t}}}}{\frac{c_{i}}{k_{i}^{j}-\frac{c_{i}}{u_{i}^{t}}}-\frac{q_{i}}{k_{i}^{j}-\frac{q_{i}}{u_{i}^{t}}}}\right)
\end{aligned}
$$

- R_{i} : red duration
- q_{T} : total arrival flow to the link
- q_{i} : arrival flow of lane i
- q_{1} : arrival flow to the N dedicated lane; $q_{1}=(1-p) q_{T}$
- q_{2} : arrival flow to the AV dedicated lane; $q_{2}=p q_{T}$

Delay at an Arterial Signalized Link-Summary

Summary

oAnalytical expressions of upper and lower bounds of mixed flow headway
ovalidation of theoretical headways by microsimulation experiments
oDelay of a mixed flow at a signalized 2-lane arterial link for several lane utilization scenarios
oTrade-offs
oDynamic Lane Allocation (left turning traffic, spillback) oSignal Control Strategies

