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Applications of Machine Learning 
for Autonomous Driving

&
Challenges in Testing & Verifications



Taxonomy of A Driving Trip

• Driving Experience Taxonomy – Classification by Timeline
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Taxonomy of Driving (by Critical Event)

Exemplar Automated & Assist Functions

• Strategic Advisory (Route P lanning)

• Tactical  Assist (Maneuver P lanning)

• Control and Assist (Collision Avoidance)

• Damage Mitigation (M inimum Risk Actions)
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Driving Tasks & Automation
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Driving Tasks & ML/A.I.
Hierarchical Level of 
Driver Tasks

Tasks and 
Considerations

Human and Artificial 
Intelligence
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Trip planning, 
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Adaptation, Planning, 
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(General A.I.)

Control
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Motor actions, 
Physical response

Control optimization 
(safety, efficiency, 
smoothness, etc.)



A Great Enabler

Machine Learning/ A.I .  & Automated Driving

A Fitting Challenge

Where and How Best to Utilize?



Automated Driving Systems (ADS) 
- Functional Block Diagram
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Automated Driving Systems (ADS) 
- Feedforward and Feedback in Control Systems
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Automated Driving Systems (ADS) 
- DNN End-to-End and Feedback in ADS
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* End to End Learning for Self-Driving Cars, https://arxiv.org/abs/1604.07316



Automated Driving Systems (ADS) 
AI/ML Application
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Divide and Conquer!

Driving Policy
By Machine-Learning

Autonomous Perception 
by Deep Learning 

* End-To-End Learning of Driving Models From Large-Scale Video Datasets, 
https://arxiv.org/pdf/1612.01079.pdf



Reinforcement Learning for Automated Driving 
A Use Case of Ramp Merge Automation

Pin Wang, Ching-Yao Chan  



RL Training Results

Balanced weightings
training steps

Hardware
Processor: 2.5 GHz Intel Core i7 CPU
Memory: 16 GB

Training Time:
About 100 mins.
About 15,000 merging vehicles.



Driving Performance Metrics vs. Reward Function

 distance to gap front vehicle
 distance to gap back vehicle
 speed

 positive max. acceleration
 negative max. acceleration

Training steps



• Driver errors cause >90% of accidents

• Automated Driving Systems (ADS) will replace  
drivers to perform driving tasks

• Including drivers in the loop is not sensible,  and 
drivers can’t be expected to take over  safely or
effectively.

• Do without Drivers!

Autonomous Vehicle Proposition



Things Could Still Go Wrong,

Even I f Vehicles are Automated?



• Driver’s hands on wheel for only 25 seconds during 37-minute period
• Driver ignored 7 visual warnings and 6 audible warnings during the 

trip

• Tesla cruise control set at 74 mph.
• Driver has at least 3.4 seconds to react.

Tesla Fatality Incident (May 2016, Florida)

• Neither human nor the machine hits the brake.



Questions and Comments

• Supposedly, the driver should still be monitoring the Driving 
environment. (SAE Level 2)

• Can we expect drivers to be continuously vigilant?

• Apparently, the “detection/perception” function failed for the 
ADS to timely react to the situation. 

• Why did the Tesla do not slow down?
• Radar was the only sensor that could have detected the 

tractor-trailer, allegedly.

• Can AI/ML help?



• Recent UBER Incident (March 2017, Arizona)

• UBER car has the right of way, per police report. 
• The left-turn car was “at fault,” and cited.

• Two inside lanes were grid-locked. (orange)
• The outside lane was clear to proceed. (green)

• Did the UBER car try to “rush through the intersection”?
• Did it make a good judgment?

UBER Accident, 03/2017 



Questions and Comments

• How will a (conservative) human driver behave if he is 
in the UBER car?

• Slow down as it approaches, given that the left-lane 
traffic is congested and partially blocking the view?

• Is this a failure in decision making and driving behaviors?
• Defensive driving in anticipation of other road users

• Can AI/ML help?



• Recent Cruise Incident (December 2017, SF)

• Cruise AV intends to change lane, but a van in front slows down
• As Cruise AV aborted a lane change and was re-centering itself 

in the lane, 
• A motorcycle that that had just lane-split between two 

vehicles moved into the center lane, glanced the side of the 
Cruise AV, wobbled, and fell over.

• At the time of the collision, 
• Cruise AV was traveling with the flow of traffic at 12 mph
• Motorcycle at approximately 17 miles per hour.

• Can AI/ML help?

Cruise Automation Accident, 12/2017 



Safety Challenges in Real World

• These accidents may be the first to draw attention, 
• But, they won’t be the last

• There is usually a prime culprit of functional failure in the 
system,

• But, multiple causes/factors are often involved

• The real world is very complicated
• How much testing is needed?
• How do we verify safety?



Challenges 

in

AV Testing and Safety Verification



• The National Safety Council of US reports a rate (including deaths of 
pedestrians and cyclists killed in motor vehicle accidents for all roads) 
of 
• 1.25 deaths per 100 million vehicle miles, or
• 12.5 deaths per billion vehicle miles) traveled in 2016. 

• 80 million vehicle-miles per fatality
~= 20,000 miles/per year X 50 years X 80 life-times, or
~= 4,000 cars X 20,000 miles/per car per year (production)
~= 10 cars X 160,000 miles/per car per year X 50 years (prototype)

How Much Testing Is Needed?
Compared to Benchmark (Human) Performance



• Even if 109 km miles were driven for testing, what do we learn?

• As of 02/2016 (after the Google car-bus incident), Google cars had a 
total of 17 crashes over 1.3 million miles of on-road testing, since 2009. 
(13 by other vehicles rear-ending Google cars)
• Twice as high as typical statistics
• Is Google safety performance inferior?

• At the time of the first fatal Tesla crash in 05/2016, Tesla Auto-Pilot 
fleet has accumulated over 130 million miles on the road.
• Mileage relatively higher than typical statistics
• Is Tesla safety performance superior?

• Accidents are random events, and they must be given in the context of 
probability. (Topic for another day!)

How Confident Are We about 
the Validity of On-Road Testing?



• The data point at zero events in the figure* means 
that, with a distance factor ad≈3, the probability e is 
less than 5% that a vehicle performing worse than the 
comparison group is not involved in an event. 

Distance Factor 
at 

Error Probability 
e = 5%

* Doctoral Dissertation by Walther Wachenfeld, advised by 
Prof. Hermann Winner, Technischen Universität Darmstadt 

Poisson Distribution: Pλ(k) = λ
𝒌𝒌

𝒌𝒌!
e-λ

• Premise: The occurrence of an 
accident is an independent and 
non-exhaustive random process. 

A Probabilistic Model 
for Accident Occurrence



Safety Assurance of ADS

• The consensus is that it is too resource-consuming and not 
feasible to conduct ADS testing by physical cases “completely.”

• Safe validation must include a structured combination of the 
following methodologies:

• Proving ground testing (especially corner cases)
• On-road testing
• Simulation

• Safety assurance is a major challenge to be addressed.

• Efforts are underway, e.g. PEGASUS project in Germany.



How to Expedite Learning and Testing?

• Practices of Safety Assurance Testing:

• Learn from database of “corner cases”
• Collection of challenging scenarios and probable 

test cases for specifications

• “Fleet” Learning
• Tesla, e.g.

• “Simulated” Learning
• Waymo, e.g.



Learning Corner Cases
• Testing to ensure that they can operate reliably under 

infrequently encountered situations
• Strange and extreme weather
• Emergency vehicles, fire trucks, police cars, motorcycles
• Other road users’ behaviors (e.g. pedestrians and bicyclists)
• Unusual traffic, construction zones, etc.

• Situations that humans find understandable may not be easily 
recognizable to software*

• A data set comprehensive to a human may be insufficient for a 
machine

• Creating Corner Cases is a topic for AI/ML methods
* Edge Cases and Unknown Unknowns, M. Wagner, 07/2017



Tesla “Fleet Learning”
• As of November 2016, 

• The Autopilot first generation fleet is over 100,000 vehicles strong.
• Tesla has accumulated 1.3 billion miles of Autopilot data from its first 

generation sensor suite.
• The actual number of miles driven with the Autopilot active is closer 

to 300 million miles at that point in time.

• Tesla “learn” from the data even when the Autopilot is not active to 
improve its Autopilot.

• Distributed and Crowd-Based Learning is a research topic for AI/ML.



Waymo “CarCraft”

Google’s Virtual World:

• At any time, there are now 25,000 virtual self-driving cars making 
their way through fully modeled versions of cities and test-track 
scenarios. 

• Collectively, they now drive 8 million miles per day in the virtual 
world. 

• In 2016, they logged 2.5 billion virtual miles versus a little over 3 
million miles by Google’s self-driving cars that run on public roads.

How to create meaningful simulation scenarios is an active 
topic.



How Does Waymo Do it? (1)
Waymo Safety Report, 10/2017, https://waymo.com/safetyreport/

• Behavioral Safety (driving decisions and behavior of our vehicles on the 
road),

• Functional Safety (operate safely even when there is a system fault or 
failure; including backups and redundancies),

• Crash Safety (ability to protect people within the car), 

• Operational Safety (safety and comfort in interaction between passenger 
and car), and 

• Non-collision Safety (safety for anyone interacting with the vehicle in any 
capacity).

https://waymo.com/safetyreport/


How Does Waymo Do it? (2)
Waymo Safety Report, 10/2017, https://waymo.com/safetyreport/

• Waymo’s Self-Driving Systems, Safety Measures
• Operational Design Domain (ODD)
• Minimum Risk Condition (fallback)

• Test and Verification Methods
• Base Vehicle Safety
• Self-Driving Hardware Testing
• Self-Driving Software Testing

• Simulation, Closed-Course, Real-World Driving
• Testing the Fully Integrated Vehicles

• Testing on Public Road
• Testing Crash Avoidance Capabilities
• Hardware reliability and durability testing

https://waymo.com/safetyreport/


Challenges 
in

Safety Testing & Verification

ML/ AI in Autonomous Driving



Safety Challenges for A.I.

• “Safe” means* (for ML and AI)
• Doing what they are designed to do properly
• Dealing with non-routine hazards
• Providing resilience in likely gaps
• Being adaptive by on-line learning
• Planning to be fail-operational and fail-safe 
• Monitoring themselves with confidence
• Maximizing controllability

* Koopman and Wagner, IEEE ITSC Magazine, Spring 2017



Meeting the Challenges
Desirable Safety Features and 
Requirements

Needed Research in ML/AI to 
Address Concerns

Transparency (non-black box) Explainable A.I.

Robustness (fault tolerance) Adversarial learning

Predictable causality Formal methods for testing 
and verification

Resilience Domain adaptation

Consistency Statistical convergence

Reliability Sensitivity to disturbance



Safety Risks

• Safety Risk = 
Exposure   X   Severity   X   Controllability

• Fixed-route, slow-moving (driverless) shuttles minimize safety 
risks.

• Partially automated systems (and ADAS) have drivers as backup, to 
increase controllability and reduce risks

• Driverless Automated Mobility Services (Robot-Taxi) must perform 
well to avoid risks.



A.I. Evolution toward Safe ADS
• Higher Intelligence Beings

• Adaptive to new domains
• Robust to deal with adversarial inputs
• Meta-Learning – Learning to Learn
• General A.I.

• Continuing AI/ML research will evolve toward helping 
achieve ADS-Safety.



Thank you.

Ching-Yao Chan
cychan@berkeley.edu 
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