Applications of Machine Learning for Autonomous Driving & Challenges in Testing & Verifications

Ching-Yao Chan Nokia Workshop January 11, 2018

Taxonomy of A Driving Trip

• Driving Experience Taxonomy – Classification by Timeline

Taxonomy of Driving (by Critical Event)

Exemplar Automated & Assist Functions

- Strategic Advisory (Route Planning)
- Tactical Assist (Maneuver Planning)
- Control and Assist (Collision Avoidance)
- Damage Mitigation (Minimum Risk Actions)

Driving Tasks & Automation

Hierarchical Level of Driver Tasks	Tasks and Considerations	Automation & Assist Functionality
Strategic (Long time intervals)	Trip planning, Route selection, Risks and costs, Satisfaction & comfort	Long-term planning, Route optimization Risk evaluation, Comfort/security assurance
Tactical (seconds)	Situation Awareness & Negotiating maneuvers, Obstacle avoidance, Gap acceptance, Turning and overtaking	Partially or fully support drivers for cognition, perception, and decision making
Control (centi- or milli- seconds)	Motor actions, Physical response	Enhance or substitute driver actions to overcome degradation of physical and mental abilities

Driving Tasks & ML/A.I.

Hierarchical Level of Driver Tasks	Tasks and Considerations	Human and Artificial Intelligence
Strategic (Long time intervals)	Trip planning, Route selection	Trip optimization (time, cost, risk, comfort, etc.)
Tactical (seconds)	Situation Awareness & Negotiating maneuvers, Obstacle avoidance, Gap acceptance, Turning and overtaking	Inference, Anticipation, Adaptation, Planning, etc. (General A.I.)
Control (milliseconds)	Motor actions, Physical response	Control optimization (safety, efficiency, smoothness, etc.)

Machine Learning/A.I. & Automated Driving

A Great Enabler

A Fitting Challenge

Where and How Best to Utilize?

Automated Driving Systems (ADS) - Functional Block Diagram

Automated Driving Systems (ADS)

- Feedforward and Feedback in Control Systems

Automated Driving Systems (ADS) - DNN End-to-End and Feedback in ADS

Automated Driving Systems (ADS) AI/ML Application

^{*} End-To-End Learning of Driving Models From Large-Scale Video Datasets, https://arxiv.org/pdf/1612.01079.pdf

Reinforcement Learning for Automated Driving A Use Case of Ramp Merge Automation

Pin Wang, Ching-Yao Chan

RL Training Results

Hardware

Processor: 2.5 GHz Intel Core i7 CPU

Memory: 16 GB

Training Time:

About 100 mins.

About 15,000 merging vehicles.

Balanced weightings

Driving Performance Metrics vs. Reward Function

- ✓ distance to gap front vehicle
- ✓ distance to gap back vehicle
- ✓ positive max. acceleration
- ✓ negative max. acceleration

Autonomous Vehicle Proposition

- Driver errors cause >90% of accidents
- Automated Driving Systems (ADS) will replace drivers to perform driving tasks
- Including drivers in the loop is not sensible, and drivers can't be expected to take over safely or effectively.
- Do without Drivers!

Things Could Still Go Wrong, Even If Vehicles are Automated?

Tesla Fatality Incident (May 2016, Florida)

Neither human nor the machine hits the brake.

- Driver's hands on wheel for only 25 seconds during 37-minute period
- Driver ignored 7 visual warnings and 6 audible warnings during the trip
- Tesla cruise control set at 74 mph.
- Driver has at least 3.4 seconds to react.

Questions and Comments

- Supposedly, the driver should still be monitoring the Driving environment. (SAE Level 2)
 - Can we expect drivers to be continuously vigilant?
- Apparently, the "detection/perception" function failed for the ADS to timely react to the situation.
 - Why did the Tesla do not slow down?
 - Radar was the only sensor that could have detected the tractor-trailer, allegedly.
- Can AI/ML help?

UBER Accident, 03/2017

Recent UBER Incident (March 2017, Arizona)

- UBER car has the right of way, per police report.
- The left-turn car was "at fault," and cited.
- Two inside lanes were grid-locked. (orange)
- The outside lane was clear to proceed. (green)
- Did the UBER car try to "rush through the intersection"?
- Did it make a good judgment?

Questions and Comments

- How will a (conservative) human driver behave if he is in the UBER car?
 - Slow down as it approaches, given that the left-lane traffic is congested and partially blocking the view?
- Is this a failure in decision making and driving behaviors?
 - Defensive driving in anticipation of other road users
- Can AI/ML help?

Cruise Automation Accident, 12/2017

- Recent Cruise Incident (December 2017, SF)
- Cruise AV intends to change lane, but a van in front slows down
- As Cruise AV aborted a lane change and was re-centering itself in the lane,
- A motorcycle that that had just lane-split between two vehicles moved into the center lane, glanced the side of the Cruise AV, wobbled, and fell over.
- At the time of the collision,
 - Cruise AV was traveling with the flow of traffic at 12 mph
 - Motorcycle at approximately 17 miles per hour.
- Can AI/ML help?

Safety Challenges in Real World

- These accidents may be the first to draw attention,
 - But, they won't be the last
- There is usually a prime culprit of functional failure in the system,
 - But, multiple causes/factors are often involved
- The real world is very complicated
 - How much testing is needed?
 - How do we verify safety?

Challenges

in

AV Testing and Safety Verification

How Much Testing Is Needed? Compared to Benchmark (Human) Performance

- The <u>National Safety Council of US</u> reports a rate (including deaths of pedestrians and cyclists killed in motor vehicle accidents for all roads) of
 - 1.25 deaths per 100 million vehicle miles, or
 - 12.5 deaths per billion vehicle miles) traveled in 2016.
- 80 million vehicle-miles per fatality
 - ~= 20,000 miles/per year X 50 years X 80 life-times, or
 - ~= 4,000 cars X 20,000 miles/per car per year (production)
 - ~= 10 cars X 160,000 miles/per car per year X 50 years (prototype)

How Confident Are We about the Validity of On-Road Testing?

- Even if 109 km miles were driven for testing, what do we learn?
- As of 02/2016 (after the Google car-bus incident), Google cars had a total of 17 crashes over 1.3 million miles of on-road testing, since 2009.
 (13 by other vehicles rear-ending Google cars)
 - Twice as high as typical statistics
 - Is Google safety performance inferior?
- At the time of the <u>first</u> fatal Tesla crash in 05/2016, Tesla Auto-Pilot fleet has accumulated over 130 million miles on the road.
 - Mileage relatively higher than typical statistics
 - Is Tesla safety performance superior?
- Accidents are random events, and they must be given in the context of probability. (Topic for another day!)

 Berkeley Deep Drive

A Probabilistic Model for Accident Occurrence

Poisson Distribution:
$$P_{\lambda}(k) = \frac{\lambda^{k}}{k!} e^{-\lambda}$$

 Premise: The occurrence of an accident is an independent and non-exhaustive random process.

The data point at zero events in the figure* means that, with a distance factor a_d≈3, the probability e is less than 5% that a vehicle performing worse than the comparison group is not involved in an event.

^{*} Doctoral Dissertation by Walther Wachenfeld, advised by Prof. Hermann Winner, Technischen Universität Darmstadt

Safety Assurance of ADS

- The consensus is that it is too resource-consuming and not feasible to conduct ADS testing by physical cases "completely."
- Safe validation must include a structured combination of the following methodologies:
 - Proving ground testing (especially corner cases)
 - On-road testing
 - Simulation
- Safety assurance is a major challenge to be addressed.
- Efforts are underway, e.g. PEGASUS project in Germany.

How to Expedite Learning and Testing?

- Practices of Safety Assurance Testing:
 - Learn from database of "corner cases"
 - Collection of challenging scenarios and probable test cases for specifications
 - "Fleet" Learning
 - Tesla, e.g.
 - "Simulated" Learning
 - Waymo, e.g.

Learning Corner Cases

- Testing to ensure that they can operate reliably under infrequently encountered situations
 - Strange and extreme weather
 - Emergency vehicles, fire trucks, police cars, motorcycles
 - Other road users' behaviors (e.g. pedestrians and bicyclists)
 - Unusual traffic, construction zones, etc.
- Situations that humans find understandable may not be easily recognizable to software*
 - A data set comprehensive to a human may be insufficient for a machine
- Creating Corner Cases is a topic for AI/ML methods

Tesla "Fleet Learning"

- As of November 2016,
 - The Autopilot first generation fleet is over 100,000 vehicles strong.
 - Tesla has accumulated 1.3 billion miles of Autopilot data from its first generation sensor suite.
 - The actual number of miles driven with the Autopilot active is closer to 300 million miles at that point in time.
- Tesla "learn" from the data even when the Autopilot is not active to improve its Autopilot.
- Distributed and Crowd-Based Learning is a research topic for AI/ML.

Waymo "CarCraft"

Google's Virtual World:

- At any time, there are now 25,000 virtual self-driving cars making their way through fully modeled versions of cities and test-track scenarios.
- Collectively, they now drive 8 million miles per day in the virtual world.
- In 2016, they logged 2.5 billion virtual miles versus a little over 3
 million miles by Google's self-driving cars that run on public roads.

How to create meaningful simulation scenarios is an active topic.

Berkeley DeepDrive

How Does Waymo Do it? (1)

Waymo Safety Report, 10/2017, https://waymo.com/safetyreport/

- Behavioral Safety (driving decisions and behavior of our vehicles on the road),
- Functional Safety (operate safely even when there is a system fault or failure; including backups and redundancies),
- Crash Safety (ability to protect people within the car),
- Operational Safety (safety and comfort in interaction between passenger and car), and
- Non-collision Safety (safety for anyone interacting with the vehicle in any capacity).

Berkeley DeepDrive

How Does Waymo Do it? (2)

Waymo Safety Report, 10/2017, https://waymo.com/safetyreport/

- Waymo's Self-Driving Systems, Safety Measures
 - Operational Design Domain (ODD)
 - Minimum Risk Condition (fallback)
- Test and Verification Methods
 - Base Vehicle Safety
 - Self-Driving Hardware Testing
 - Self-Driving Software Testing
 - Simulation, Closed-Course, Real-World Driving
 - Testing the Fully Integrated Vehicles
 - Testing on Public Road
 - Testing Crash Avoidance Capabilities
 - Hardware reliability and durability testing

Challenges in Safety Testing & Verification

ML/AI in Autonomous Driving

Safety Challenges for A.I.

- "Safe" means* (for ML and AI)
 - Doing what they are designed to do properly
 - Dealing with non-routine hazards
 - Providing resilience in likely gaps
 - Being adaptive by on-line learning
 - Planning to be fail-operational and fail-safe
 - Monitoring themselves with confidence
 - Maximizing controllability

Meeting the Challenges

Desirable Safety Features and Requirements	Needed Research in ML/AI to Address Concerns

Safety Risks

Safety Risk =
 Exposure X Severity X Controllability

- Fixed-route, slow-moving (driverless) shuttles minimize safety risks.
- Partially automated systems (and ADAS) have drivers as backup, to increase controllability and reduce risks
- Driverless Automated Mobility Services (Robot-Taxi) must perform well to avoid risks.

Berkeley DeepDrive

A.I. Evolution toward Safe ADS

- Higher Intelligence Beings
 - Adaptive to new domains
 - Robust to deal with adversarial inputs
 - Meta-Learning Learning to Learn
 - General A.I.
- Continuing AI/ML research will evolve toward helping achieve ADS-Safety.

Thank you.

Ching-Yao Chan cychan@berkeley.edu

