

Program on Advanced Technology for the Highway (1986 – 1991)

Partners for Advanced Transit and Highways (1992 – 2010)

Partners for Advanced Transportation tecHnology (2011 -)

PATH Creation

- Caltrans' 1985 study of future needs cannot build our way out of congestion, but need technology
- 1986 Caltrans/Berkeley conference on future use of information technology for transportation operations – agreement with U.C. Berkeley Institute of Transportation Studies to create PATH
- First research program in U.S. on "intelligent vehicle-highway systems" – later broadened to "intelligent transportation systems"

Institute of Transportation Studies

- Created in 1948 by California Legislature, to lead research on transportation to support the state's post-war growth
- PATH is the largest research program in the Institute. The others are on:
 - Transportation Sustainability
 - Transportation Safety
 - Aviation Operations Research
 - Future Urban Transportation Systems
 - Economic Competitiveness in Transportation
 - Pavement

PATH Goals

Developing Technologies to Help Solve (California's) Main Transportation Problems

- Congestion/Mobility/Productivity of System
- Safety

With Ancillary Benefits in:

- Air Quality/Environment
- Energy Consumption
- Cost Effectiveness
- Regional/Statewide Economic Health

PATH's California Objectives

- Conduct ITS research for Caltrans' Division of Research and Innovation and System Information (DRISI) and others
 - technology and policy research
 - proof-of-concept testing
 - design and evaluation of operational tests
- Bring best available minds to bear on solving California's surface transportation problems
- Train the next generation of transportation professionals

PATH Program Management

- Combine faculty, graduate student and professional research staff activities so each does what it does best
- Collaborate closely with Caltrans to meet specific state needs for ITS research, development, testing and demonstrations
- Work directly on some U.S. DOT projects, and through Caltrans or prime contractors on other projects
- Private and international sponsorship of some projects, partnerships on other projects.

PATH Leadership Team

Directors

Tom West

Trevor Darrell

Traffic Management

Alex Skabardonis **Transportation Safety**

Ching-Yao Chan **Mobility Systems**

Steven Shladover New Initiatives

Wei-Bin Zhang

System Development

Joe Butler

PATH Capabilities

- Multi-disciplinary R, D & D projects
 - Civil, traffic, transportation engr.
 - Mechanical, electrical, industrial engr.
 - Computer science, software engr.
 - Human factors
 - Benefit/cost evaluation
- Large-scale experimental projects requiring continuous staff effort, including remote sites
- Development, prototyping and testing of infrastructure, vehicle and communication systems

Experimental Infrastructure

- Shop and laboratory space for work on both light and heavy duty vehicles
- Robert E. Parsons Traffic and Transportation Laboratory
- Wireless communications laboratory
- Experimental intersection
- Short test track

Light and heavy duty test vehicles

Instrumented Intersection and Short Test Track

- Video image processor detector systems
- Radar pedestrian detector
- Sensys wireless detectors
- Wavetronix radar
- MS-Sedco InterSector radar for bike detection
- IR beam detectors
- Conventional and Type D inductive loops
- 3M Canoga microloops
- Savari and Arada DSRC RSEs

SMS radar coverage of all approaches

Shop Space for Vehicle Development

Experimental Vehicles

Vehicle Control and Automated Driving Research at PATH

- Strong emphasis for 20 years → 600 labor years of PATH effort
- Approached from perspectives of vehicle dynamics and control and human factors
 - Deep understanding of mechanical dynamics of vehicles
 - Designing for both high positioning accuracy and smooth ride quality
 - Driver and passenger acceptance based on ride quality and user interfaces
- Experimental verification on full-scale vehicles (20+
 passenger cars, 7 heavy trucks, 5 transit buses, 1
 snowblower)

Project Sponsorships

- Primarily state and federal DOTs
- Automotive Industry Sponsors
 - Nissan Technical Center North America
 - VW/Audi Electronics Research Lab
 - Toyota InfoTechnology Center
 - BMW of North America
 - Renault
 - General Motors
 - Ford
 - Mercedes Benz Research & Development North America
 - Honda R&D North America
 - Visteon

Automation is a Tool for Solving Transportation Problems

- Alleviating congestion
 - Increase capacity of roadway infrastructure
 - Improve traffic flow dynamics
- Improving safety
 - Reduce and mitigate crashes
- Reducing energy use and emissions
 - Aerodynamic "drafting"
 - Improve traffic flow dynamics
- Using V2V and I2V connectivity to gain these benefits

PATH Automation Milestones

- 1988 Basic AHS concepts defined
- 1991 Hierarchical information architecture
- 1992 First automated vehicle experiments (4-car longitudinal control platoon, one car automated steering control) and first FHWA funding support
- 1993 AHS Precursor System Analyses
- 1994-8 National AHS Consortium (including Demo '97)
- 1998 Demo '98, Netherlands
- 2000 Demo 2000, Japan
- 2003 Bus and truck automation demonstrated
- 2007-11 Mobility Applications for VII project (FHWA)
- 2013 New CA DMV and FHWA EARP projects

Consistent, Accurate Steering on Highway

 3 cm lateral variations at every location at highway speeds

Vehicle Assist and Automation (VAA) – Automatic Steering Control of Buses

Objectives

- Implement VAA applications using two guidance technologies (magnetic & DGPSbased)
- Address VAA deployment issues and assess benefits and costs in revenue-service operations

Team

- FTA, Caltrans, 2 transit operators, PATH, industrial contractors
- Transit revenue service
 - Lane Transit District (LTD) Franklin EmX BRT service (Eugene, OR):
 - A 2-mile route, with 3 intermediate stations, round trip
 - Public revenue service in 2014

Automatic Longitudinal (Platoon) Control

- Engines and brakes of conventionally powered vehicles can be controlled accurately enough for precision vehicle following in platoons (20 cm accuracy)
- Precise vehicle following can be done with smooth ride quality
- Vehicles can be driven in close-formation platoons (3 – 5 m gaps) without exposing occupants to exhaust gases or impeding cooling air to radiators
- Vehicles can merge into the middle of a passing platoon, using wireless coordination.

Automated Platoon Longitudinal Control and Merging

1997

PATH V2V Truck Platoons (2003, 2010)

2 trucks, 3 to 10 m gaps

3 trucks, 4 to 10 m gaps (6 m in video)

Current Automation Projects

- FHWA EARP Partial Automation for Truck Platooning
 - With Volvo Trucks, Caltrans, LA Metro
 - Experimental implementation on new Volvo platform
 - cooperative ACC, testing driver acceptance and energy savings
- FHWA EARP Using Cooperative Adaptive Cruise Control to Form High-Performance Vehicle Streams
 - With TU Delft as subcontractor
 - Simulations of high-level control strategies
 - Estimating traffic impacts of CACC
- California DMV automation regulations support
 - Technical advice to state developing regulations for testing and public operation of AVs