Road Vehicle Automation Challenges

Steven E. Shladover, Sc.D. California PATH Program University of California, Berkeley

April 30, 2015

What are we talking about?

- What are the goals? What problem(s) are we trying to solve?
- Need precise terminology and operational concepts in order to understand each other
 - Not "driverless", "self driving" or "unmanned"
- Automation vs. autonomy
- Definitions of driver vs. "system" roles
- Automation under what operating conditions/environmental complexity?
- Technical challenges

Potential Goals

Constraints

Definitions (per Oxford English Dictionary)

autonomy:

- 1. (of a state, institution, etc.) the right of self-government, of making its own laws and administering its own affairs
- 2. (biological) (a) the condition of being controlled only by its own laws, and not subject to any higher one; (b) organic independence 3. a self-governing community.

autonomous:

- 1. of or pertaining to an autonomy
- possessed of autonomy, <u>self governing</u>, <u>independent</u>
 (biological) (a) conforming to its own laws only, and not subject to higher ones; (b) independent, i.e., not a mere form or state of some other organism.

Definitions (per Oxford English Dictionary)

autonomy:

- 1. (of a state, institution, etc.) the right of self-government, of making its own laws and administering its own affairs

 2. (biological) (a) the condition of being controlled only by its own
- laws, and not subject to any higher one; (b) organic independence 3. a self-governing community.

autonomous:

- 1. of or pertaining to an autonomy
- possessed of autonomy, <u>self governing, independent</u>
 (biological) (a) conforming to its own laws only, and not subject to higher ones; (b) independent, i.e., not a mere form or state of some other organism.
- automate: to apply automation to; to convert to largely automatic operation

automation: automatic control of the manufacture of a product through a number of successive stages; the application of automatic control to any branch of industry or science; by extension, the use of electronic or mechanical devices to replace human labour

Autonomous and Cooperative ITS

SAE J3016 Definitions

SAE	Name	Narrative Definition	Execution of Steering/ Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (<i>Driving Mod</i> es)
Human driver monitors the driving environment						
0	No Automation	the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes
Automated driving system ("system") monitors the driving environment						
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

Example Systems at Each Automation Level

Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> function and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist (Mercedes)	Must monitor driving environment (system nags driver to try to ensure it)
3	Traffic Jam Pilot Automated parking	May read a book, text, or web surf, but be prepared to intervene when needed
4	Highway driving pilot Closed campus driverless shuttle Driverless valet parking in garage	May sleep, and system can revert to minimum risk condition if needed
5	Automated taxi (even for children) Car-share repositioning system	No driver needed PALLEDRINIA

How to manage driver interaction?

- Can't redesign the driver → must design the system to be usable by the driver
- Force driver to stay engaged? (nuisance)
- Disregard driver? (system must take full responsibility)
- Re-engage driver when system is disabled? (how much time needed to guarantee arousing a sleeping or texting driver?)

Safety Requirements

- Not an "unmanned" vehicle, but a safety-of-life critical system
- "Significantly" safer than today's driving to gain public acceptance and provide benefits
 - Fatal crashes MTBF > 3.3 million vehicle hours
 - Injury crashes MTBF > 65,000 vehicle hours
- What software-intensive consumer electronic product can approach these MTBF levels?
- How to PROVE that an automated driving system is better than this?
 - To trust this vehicle to carry your family
 - To get affordable insurance
 - To manage risk of the system vendor

Driving Environment Diversity (1/2)

- Existing infrastructure, unchanged
 - Off-road
 - All roads
 - All paved roads
 - Well-marked paved roads
 - Urban and suburban arterials
 - Rural highways
 - Residential streets
 - Limited-access highways (freeways)
 - Parks or low-speed pedestrian zones
 - Enclosed parking facilities

Driving Environment Diversity (2/2)

- Existing infrastructure, augmented for automation
 - Dedicated lanes within limited-access highway
 - Special markings or electronics added
- Separate new infrastructure
 - Dedicated, protected lanes on limitedaccess highways
 - Fully automated parking facilities
 - Physically separated guideways (PRT)

Driving Environment Complexity

- Cluttered, highly dynamic environment
 - Vehicles, pedestrians, bikes, kids, pets
 - Scofflaw and aggressive drivers
 - Adverse weather and visibility
 - Poorly maintained markings and signs
- How to replicate defensive driving skills, including use of subtle visual cues and eye contact?
- Murphy's Law is unavoidable

Orders of Magnitude Harder than **Commercial Aircraft Automation**

- Positioning accuracy ~ 10 cm
- Many simultaneous threats to track and avoid
 - Relative locations of targets ~10 cm
 - Relative speeds of targets ~1 m/s
- Threat response needed in <100 ms
- Fault recovery needed in <100 ms
- No operator (driver) training
- No preventive maintenance, >10 year lifetime
- Unit capital cost target ~ \$3 K

Need for Communication/Cooperation to Gain Transportation Benefits

- Infrastructure must provide traffic signal status, variable speed limits, dynamic restrictions on lane use (work zones)
- Extremely beneficial to have other vehicles providing:
 - Maneuver intentions
 - Message/condition acknowledgments
 - Advance alerts about hazards
 - Cooperation to improve efficiency, enable close clustering to reduce drag
- By contrast, autonomous vehicles are deafmute drivers

Technological Challenges

- Sensor performance and cost
- Logic and data processing
- Software complexity and safety

Sensor Challenges for Autonomous Automation in Mixed Traffic

- High-performance, costly sensors are needed (accuracy, field of regard, discriminant capability)
- Sensors cannot detect subtle cues from other vehicles and drivers like experienced drivers
- No single sensor technology can satisfy all needs, so fusion of multiple sensors with complementary faults and vulnerabilities is necessary
 - Cost and complexity concerns
- Filtering is necessary, but introduces serious lags
- Remote sensors are slower and more uncertain than onboard sensors (speed, acceleration, driver actions)

Logic and Data Processing Challenges

- Sensor signal processing (e.g., distinguishing hazardous from benign obstacles)
 - Any object large enough to cause harm
 - BUT, ignore innocuous "soft" targets
 - "Zero" missed detections (false negatives)
 - "Near-zero" false alarms (false positives)
- Predicting future actions of other vehicles
- General driving threat assessment (defensive driving)
- Decision making in ethically ambiguous threat situations (truck vs. motorcycle)
- Moore's Law does not provide salvation

Software Challenges for Fully Automated Driving

- Complexity cannot test all combinations of conditions
- Cannot <u>prove</u> safety of software for safetycritical applications
- Need comprehensive fault detection, identification and reconfiguration – self-healing
- How many hours of testing are needed to <u>prove</u> safety better than human driving?
- How many hours of <u>continuous</u>, <u>unassisted</u> automated driving has anybody achieved in real traffic?

Where to go from here?

- Simplify, simplify... to focus on tractable problems to solve
 - Protected environments
 - Commercial vehicles, professional drivers
 - Use all available data (including V2V, I2V)
 - Limited levels of automation (retaining driver as safety backup)
- Automation of buses on busways
- Automation of trucks in truck lanes and terminals
- Parking in enclosed garages