Future Prospects for Connected Automated Vehicle Systems

Steven E. Shladover, Sc.D. California PATH Program Institute of Transportation Studies University of California, Berkeley

June 2016

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation (not autonomy) is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

History of Automated Driving (pre-Google)

- 1939 General Motors "Futurama" exhibit
- 1949 RCA technical explorations begin
- 1950s GM/RCA collaborative research
- 1950s GM "Firebird II" concept car
- 1964 GM "Futurama II" exhibit
- 1964-80 Research by Fenton at OSU
- 1960s Kikuchi and Matsumoto wire following in Japan
- 1970s Tsugawa vision guidance in Japan
- 1986 California PATH and PROMETHEUS programs start
- 1980s Dickmanns vision guidance in Germany
- 1994 PROMETHEUS demo in Paris
- 1994-98 National AHS Consortium (Demo '97)
- 2003 PATH automated bus and truck demos
- (2004 2007 DARPA Challenges)

General Motors 1939 Futurama

General Motors' Futurama 1939 New York World's Fair

GM Firebird II Publicity Video

GM Technology in 1960

CALLED R N LA

General Motors 1964 Futurama II

Robert Fenton's OSU Research

Automatically Controlled 1965 Plymouth at Transportation Research Center of Ohio The Ohio State University (OSU) 1977

Pioneering Automated Driving in Japan (courtesy of Prof. Tsugawa, formerly at MITI)

1960s – Wire following Kikuchi and Matsumoto

1970s – Vision Guidance (Tsugawa)

Pioneering Automated Driving in Germany (1988 - courtesy Prof. Ernst Dickmanns, UniBWM)

CALLE OR NIA PATH

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Terminology Problems

- Common misleading, vague to wrong terms:
 - "driverless" but generally they're not!
 - "self-driving"
 - "autonomous" 4 common usages, but different in meaning (and 3 are wrong!)
- Central issues to clarify:
 - Roles of driver and "the system"
 - Degree of connectedness and cooperation

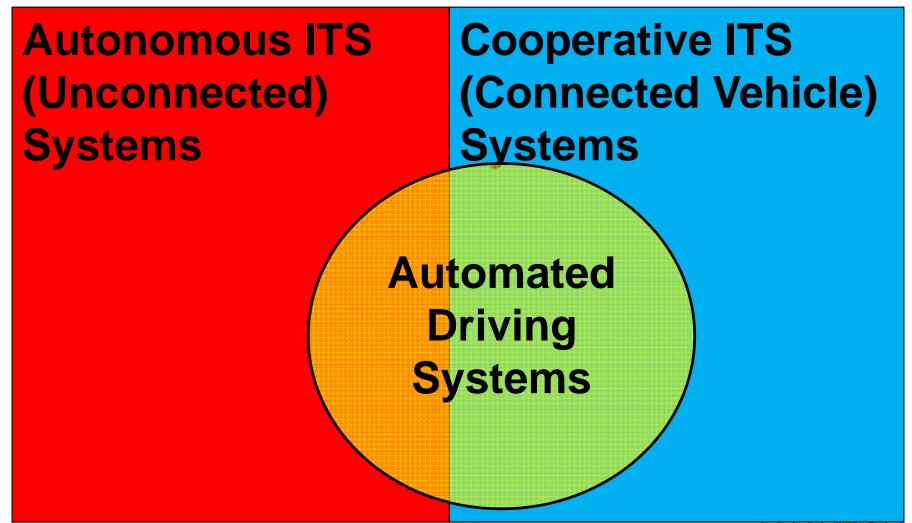
Definitions (per Oxford English Dictionary)

autonomy:

1. (of a state, institution, etc.) the right of <u>self-government</u>, of making its own laws and administering its own affairs

2. (biological) (a) the condition of being controlled only by its own laws, and not subject to any higher one; (b) organic independence 3. a self-governing community.

autonomous:


- 1. of or pertaining to an autonomy

 possessed of autonomy, <u>self governing, independent</u>
 (biological) (a) conforming to its own laws only, and not subject to higher ones; (b) independent, i.e., not a mere form or state of some other organism.

automate: to apply automation to; to convert to largely automatic operation

automation: automatic control of the manufacture of a product through a number of successive stages; the application of automatic control to any branch of industry or science; by extension, the use of electronic or mechanical devices to replace human labour

Autonomous and Cooperative ITS

SAE J3016 Definitions – Levels of Automation

SAE Level	Name	Narrative Definition	Execution of Steering/ Acceleration/ Deceleration	<i>Monitoring</i> of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (<i>Driving Mod</i> es)
Human driver monitors the driving environment						
0	No Automation	the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	System	Human driver	Human driver	Some driving modes
Autom	nated driving sys	tem ("system") monitors the driving environment				
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the <i>driving mode</i> -specific performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> , even if a <i>human driver</i> does not respond appropriately to a <i>request to intervene</i>	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an <i>automated driving</i> system of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes

Copyright 2014 SAE

Example Systems at Each Automation Level

Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> function and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist (Mercedes, Tesla, Infiniti, Volvo,) Parking with external supervision	Must monitor driving environment (system nags driver to try to ensure it)
3	Traffic Jam Pilot	May read a book, text, or web surf, but be prepared to intervene when system demands it
4	Highway driving pilot Closed campus driverless shuttle Driverless valet parking in garage	May sleep, and system can revert to minimum risk condition if needed
5	Automated taxi (even for children) Car-share repositioning system	No driver needed

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Automation Is a Tool for Solving Transportation Problems

- Alleviating congestion
 - Increase capacity of roadway infrastructure
 - Improve traffic flow dynamics
- Reducing energy use and emissions
 - Aerodynamic "drafting"
 - Improve traffic flow dynamics
- Improving safety
 - Reduce and mitigate crashes

...BUT the vehicles need to be connected

Alleviating Congestion

- Typical U.S. highway capacity is 2200 vehicles/hr/lane (or 750 trucks/hr/lane)
 - Governed by drivers' car following and lane changing gap acceptance needs
 - Vehicles occupy only 5% of road surface at maximum capacity
- Stop and go disturbances (shock waves) result from drivers' response delays
- <u>V2V Cooperative</u> automation provides shorter gaps, faster responses, and more consistency
- <u>I2V Cooperation</u> maximizes bottleneck capacity by setting most appropriate target speed
- \rightarrow Significantly higher throughput per lane
- \rightarrow Smooth out transient disturbances

Reducing Energy and Emissions

- At highway speeds, half of energy is used to overcome aerodynamic drag
 - Close-formation automated platoons can save 10% to 20% of total energy use
- Accelerate/decelerate cycles waste energy and produce excess emissions
 - Automation can eliminate stop-and-go disturbances, producing smoother and cleaner driving cycles
- BUT, this only happens with V2V cooperation

Improving Safety

- 94% of crashes in the U.S. are caused by driver behavior problems (perception, judgment, response, inattention) and environment (low visibility or road surface friction)
- Automation avoids driver behavior problems
- Appropriate sensors and communications are not vulnerable to weather problems
 - Automation systems can detect and compensate for poor road surface friction
- BUT, current traffic safety sets a very high bar:
 - 3.3 M vehicle <u>hours</u> between fatal crashes (375 years of non-stop driving)
 - 65,000 vehicle <u>hours</u> between injury crashes (7+ years of non-stop driving)

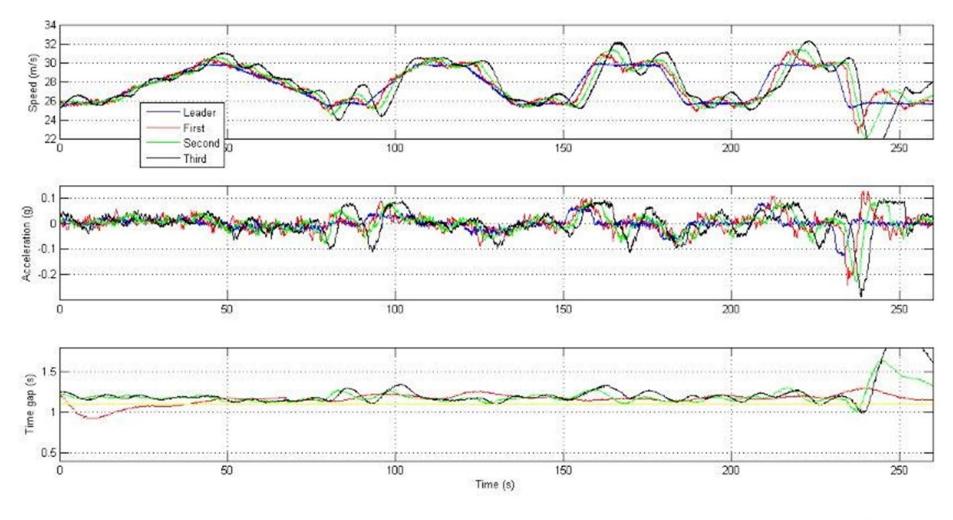
Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Cooperation Augments Sensing

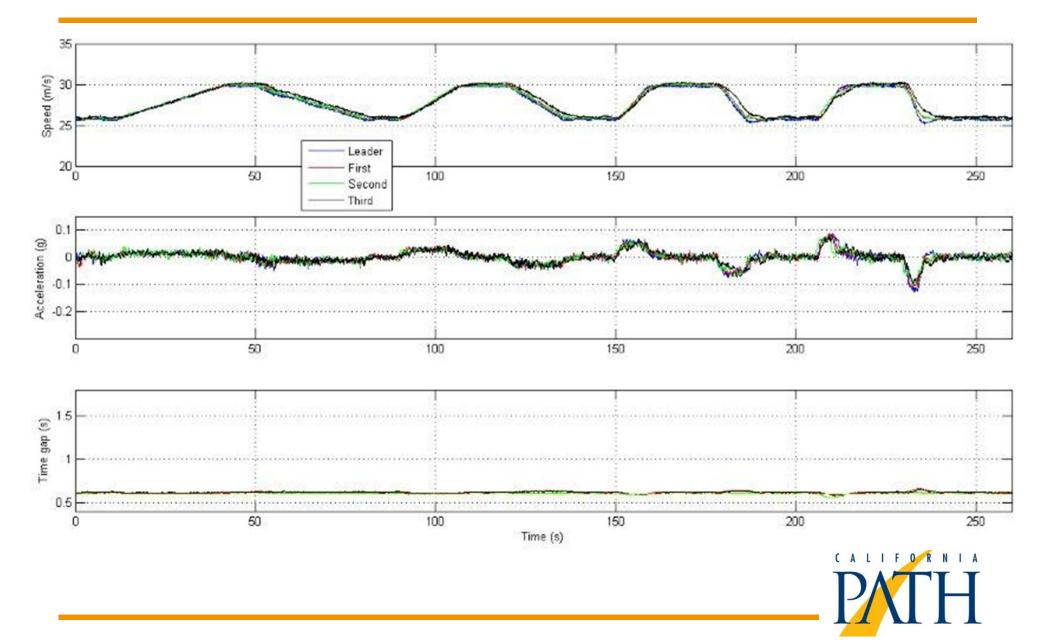
- Autonomous vehicles are "deaf-mute" drivers
- Cooperative vehicles can "talk" and "listen" as well as "seeing" (using 5.9 GHz DSRC comm.)
 – NHTSA regulatory mandate in process in U.S.
- Communicate vehicle performance and condition directly rather than sensing indirectly
 - Faster, richer and more accurate information
 - Longer range
- Cooperative decision making for system benefits
- Enables closer separations between vehicles
- Expands performance envelope safety, capacity, efficiency and ride quality

Examples of Performance That is <u>Only</u> Achievable Through Cooperation


- Vehicle-Vehicle Cooperation
 - Cooperative adaptive cruise control (CACC) to eliminate shock waves
 - Automated merging of vehicles, starting beyond line of sight, to smooth traffic
 - Multiple-vehicle automated platoons at short separations, to increase capacity
 - Truck platoons at short enough spacings to reduce drag and save energy
- Vehicle-Infrastructure Cooperation
 - Speed harmonization to maximize flow
 - Speed reduction approaching queue for safety
 - Precision docking of transit buses
 - Precision snowplow control

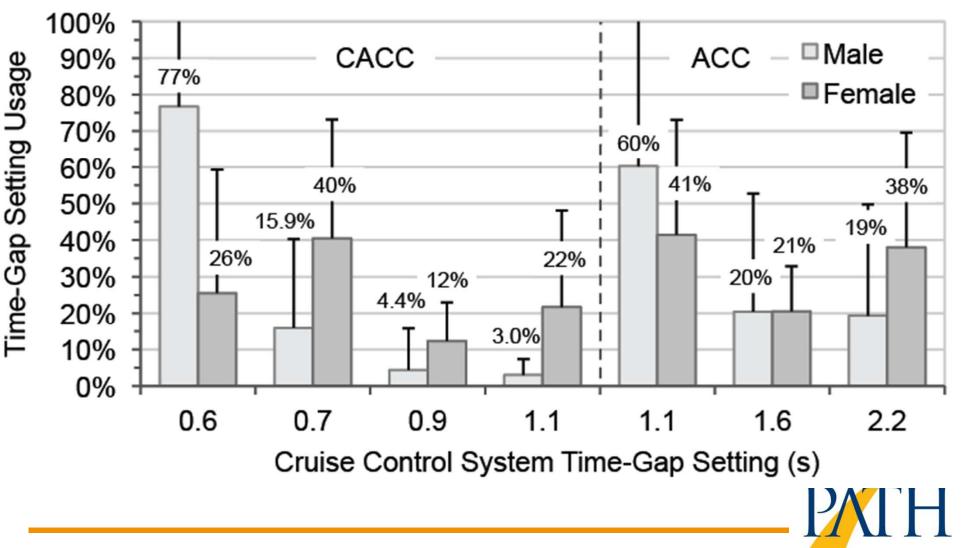
Example 1 – Production Autonomous ACC (at minimum gap 1.1 s)

Response of Production ACC Cars

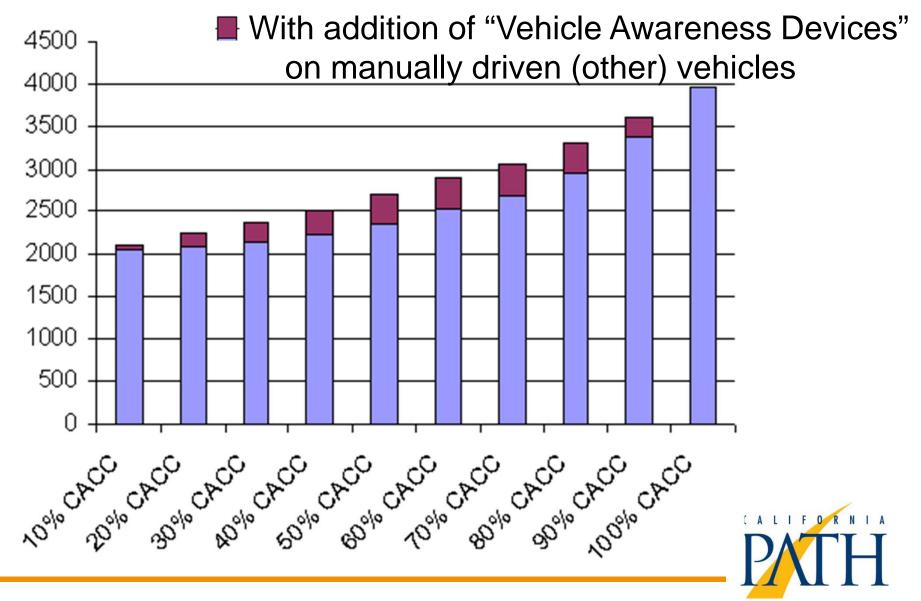


PATH

Example 2 – V2V Cooperative ACC (at minimum gap 0.6 s)



V2V CACC Responses (3 followers)

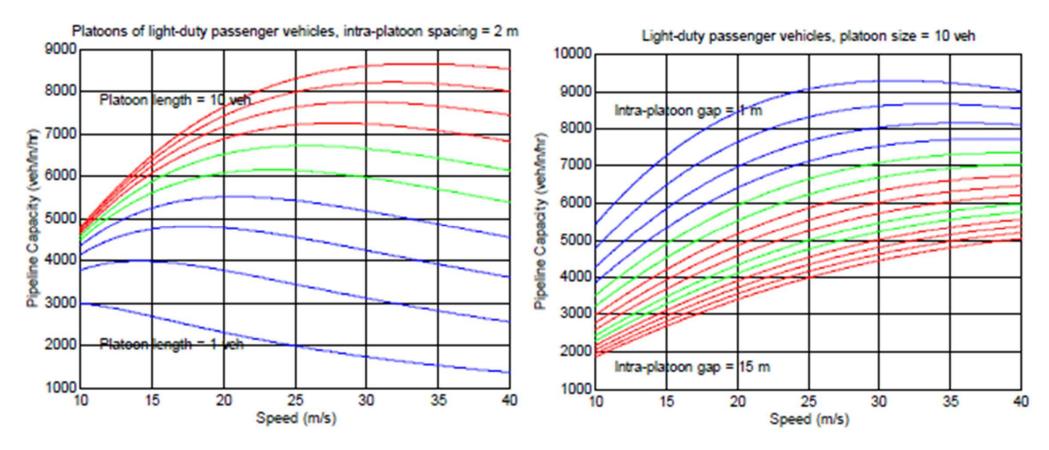


Distribution of Time Gap Selections by General Public Drivers of CACC

Results from PATH experiment with 16 drivers in 2009

Lane Capacity vs. CACC Market Pen. Based on Gaps Chosen by Drivers

PATH Automated Platoon Longitudinal Control and Merging (V2V)

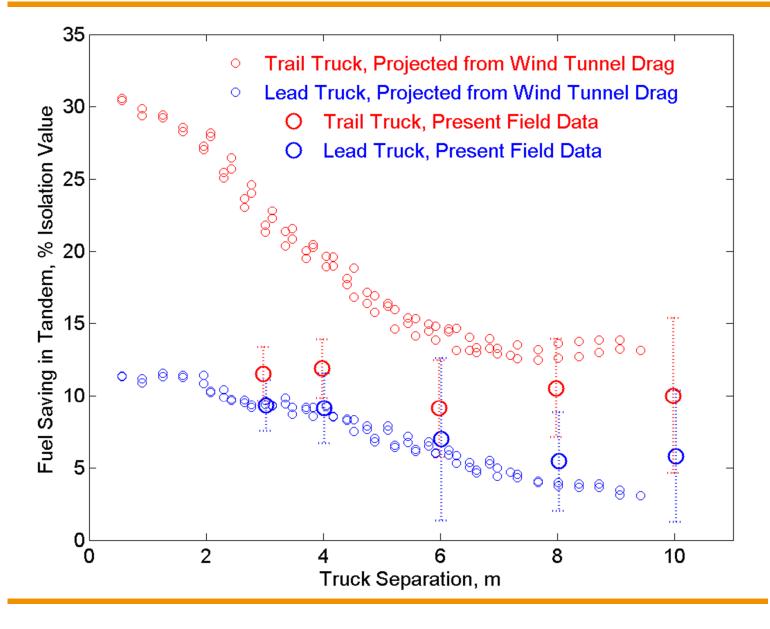


Significant Lane Capacity Increases From Close-Formation Platoons

- Results from analysis with 100% market penetration of cars in platoons
- Idealized analysis without including lane changing and merging, so achievable results will be about 75% of this

PATH V2V Truck Platoons (2003, 2010)

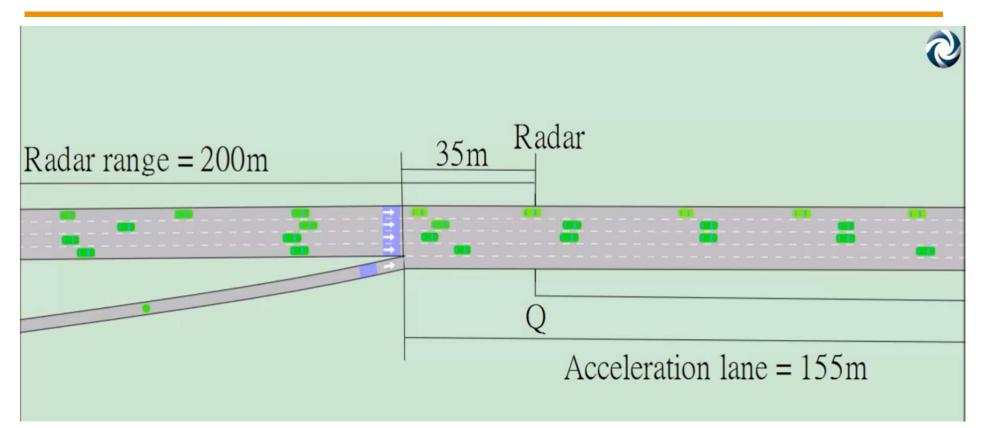
2 trucks, 3 to 10 m gaps



3 trucks, 4 to 10 m gaps (6 m in video)

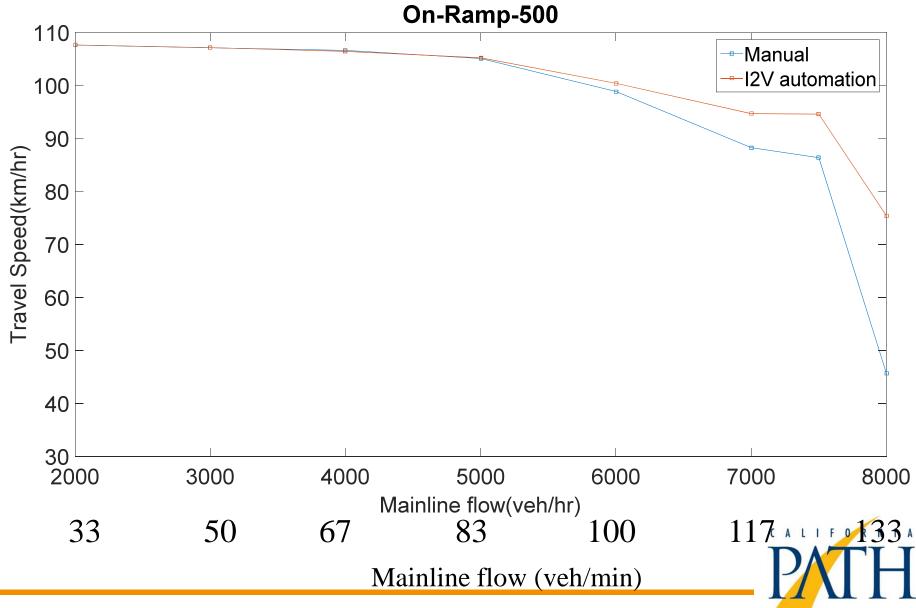
Heavy Truck Energy Savings from Close-Formation Platoon Driving

2016 - CACC on 3 Class-8 Trucks

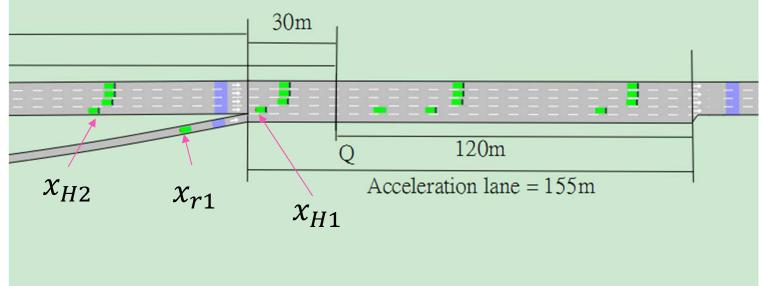

 FHWA EARP "Partially Automated Truck Platooning" (PATP) Project, with Volvo Group

Other Ways for Communications to Improve Traffic Flow

- I2V communication to help vehicles entering at a highway on-ramp to find gaps in the mainline flow
 - Entering vehicles adjust speeds
 - Limited by range of roadside sensing to detect upstream gaps approaching
- V2V communication to enable cooperative merging at on-ramp
 - Entering AND mainline vehicles adjust speeds automatically
 - Limited by need for high market penetration
 of equipped vehicles


Modeling of I2V Automation Case

- Traffic microsimulation detailed vehicle-vehicle interactions
- Roadside sensor detects gaps in mainline traffic and I2V communications inform vehicle entering from on-ramp
- On-ramp vehicle adjusts speed to merge smoothly into gap


Travel speed change with different traffic volumes Effect of I2V assistance to entering vehicles

V2V Cooperation at Highway On-Ramp

- 1. Vehicle r_1 speeds up to highway travel speed v_{H1} .
- 2. Vehicle r_1 does virtual CACC following vehicle H_1
- 3. Vehicle H_2 does virtual CACC following vehicle r_1 .

- Based on DSRC communication range, cooperation can start more than 300 m before merge point
- Higher capacity appears achievable

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

No Automation and Driver Assistance (Levels 0, 1)

- Primary safety advancements likely at these levels, adding machine vigilance to driver vigilance
 - Safety warnings based on ranging sensors
 - Automation of one function facilitating driver focus on other functions
- Driving comfort and convenience from assistance systems (ACC)
- Traffic, energy, environmental benefits depend on cooperation
- Widely available on cars and trucks now

Partial Automation (Level 2) Impacts

- Probably only on limited-access highways
- Somewhat increased driving comfort and convenience (but driver still needs to be actively engaged)
- Possible safety increase, depending on effectiveness of driver engagement
 - Safety concerns if driver tunes out
- (only if cooperative) Increases in energy efficiency and traffic throughput
- When? Now (Mercedes, Tesla, Infiniti, Volvo...)

Intentional Mis-Uses of Level 2 Systems

Mercedes S-Class

Infiniti Q50

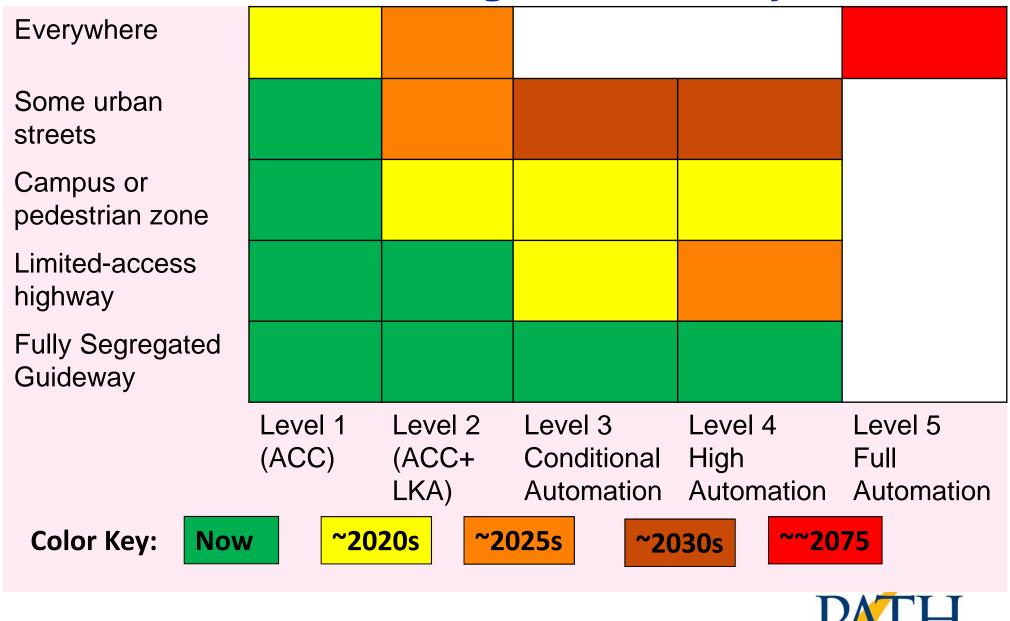
Conditional Automation (Level 3) Impacts

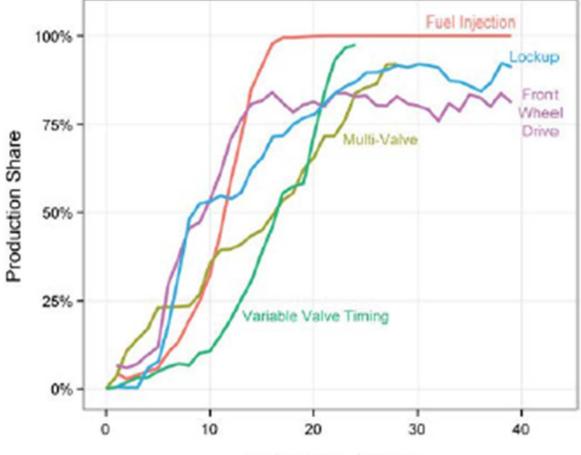
- Driving comfort and convenience increase
 - Driver can do other things while driving, so disutility of travel time is reduced
 - Limited by requirement to be able to retake control of vehicle in a few seconds when alerted
- Safety uncertain, depending on ability to retake control in emergency conditions
- (only if cooperative) Increases in efficiency and traffic throughput
- When? Unclear safety concerns could impede introduction

High Automation (Level 4) Impacts – General-purpose light duty vehicles

- Only usable in some places (limited access highways, maybe only in managed lanes)
- Large gain in driving comfort and convenience on available parts of trip (driver can sleep)
 - Significantly reduced value of time
- Safety improvement, based on automatic transition to minimal risk condition
- (only if cooperative) Significant increases in energy efficiency and traffic throughput from close-coupled platooning
- When? Starting 2020 2025?

High Automation (Level 4) Impacts – Special applications


- Buses on separate transitways
 - Narrow right of way easier to fit in corridors
 - Rail-like quality of service at lower cost
- Heavy trucks on dedicated truck lanes
 - (cooperative) Platooning for energy and emission savings, higher capacity
- Automated (driverless) valet parking
 - More compact parking garages
- Driverless shuttles within campuses or pedestrian zones
 - Facilitating new urban designs
- When? Could be just a few years away

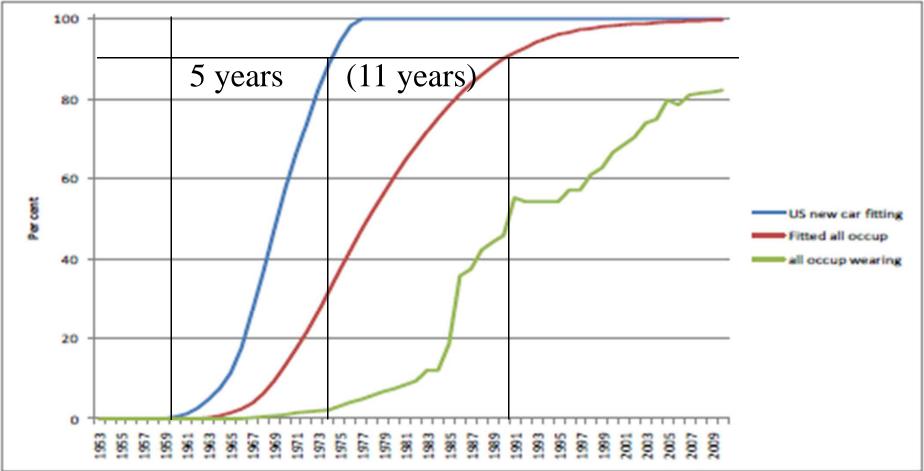

Full Automation (Level 5) Impacts

- Electronic taxi service for mobility-challenged travelers (young, old, impaired)
- Shared vehicle fleet repositioning (driverless)
- Driverless urban goods pickup and delivery
- Full "electronic chauffeur" service
- Ultimate comfort and convenience
 - Travel time disutility plunge
- (if cooperative) Large energy efficiency and road capacity gains
- When? Many decades... (Ubiquitous operation without driver is a huge technical challenge)

Personal Estimates of Market Introductions ** based on technological feasibility **

Examples of Market Growth for Powertrain Technologies – New Vehicles

Years after First Use


CITATION: Hula, A., Alson, J., Bunker, A., and Bolon, K., "Analysis of Technology Adoption Rates in New Vehicles," SAE Technical Paper 2014-01-0781, 2014, doi:10.4271/2014-01-0781.

Example Market Growth for Seat Belts

Figure 1: US seat belt adoption curves

Source: Gargett, Cregan and Cosgrove, Australian Transport Research Forum 2011

Fastest possible adoption, required by law in U.S.

Historical Market Growth Curves for Popular Automotive Features

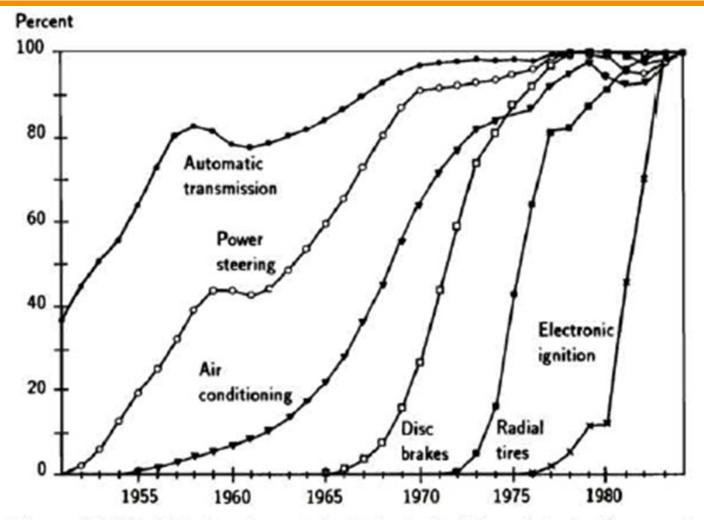


Figure 3.3.10. Diffusion of new technologies in the US car industry (in percent of car output). (Source: Jutila and Jutila, 1986.)

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Traffic Safety Challenges for High and Full Automation

- Extreme external conditions arising without advance warning (failure of another vehicle, dropped load, lightning,...)
- NEW CRASHES caused by automation:
 - Strange circumstances the system designer could not anticipate
 - Software bugs not exercised in testing
 - Undiagnosed faults in the vehicle
 - Catastrophic failures of vital vehicle systems (loss of electrical power...)
- Driver not available to act as the fall-back

Why this is a super-hard problem

- Software intensive system (no technology available to verify or validate its safety under its full range of operating conditions)
- Electro-mechanical elements don't benefit from Moore's Law improvements
- Cannot afford to rely on extensive hardware redundancy for protection from failures
- Harsh and unpredictable hazard environment
- Non-professional vehicle owners and operators cannot ensure proper maintenance and training

Dynamic External Hazards (Examples)

- Behaviors of other vehicles:
 - Entering from blind driveways
 - Violating traffic laws
 - Moving erratically following crashes with other vehicles
 - Law enforcement (sirens and flashing lights)
- Pedestrians (especially small children)
- Bicyclists
- Officers directing traffic
- Animals (domestic pets to large wildlife)
- Opening doors of parked cars
- Unsecured loads falling off trucks
- Debris from previous crashes
- Landslide debris (sand, gravel, rocks)
- Any object that can disrupt vehicle motion

Environmental Conditions (Examples)

- Electromagnetic pulse disturbance (lightning)
- Precipitation (rain, snow, mist, sleet, hail, fog,...)
- Other atmospheric obscurants (dust, smoke,...)
- Night conditions without illumination
- Low sun angle glare
- Glare off snowy and icy surfaces
- Reduced road surface friction (rain, snow, ice, oil...)
- High and gusty winds
- Road surface markings and signs obscured by snow/ice
- Road surface markings obscured by reflections off wet surfaces
- Signs obscured by foliage or displaced by vehicle prime crashes

Internal Faults – Functional Safety Challenges

Solvable with a lot of hard work:

- Mechanical and electrical component failures
- Computer hardware and operating system glitches
- Sensor condition or calibration faults

Requiring more fundamental breakthroughs:

- System design errors
- System specification errors
- Software coding bugs

Safety Challenges for Full Automation

- Must be "significantly" safer than today's driving baseline (2X? 5X? 10X?)
 - Fatal crash MTBF > 3.3 million vehicle hours
 - Injury crash MTBF > 65,000 vehicle hours
- Cannot <u>prove</u> safety of software for safety-critical applications
- Complexity cannot <u>test</u> all possible combinations of input conditions and their timing
- How many hours of testing would be needed to demonstrate safety better than today?
- How many hours of <u>continuous</u>, <u>unassisted</u> automated driving have been achieved in real traffic under diverse conditions?

Needed Breakthroughs

- Software safety design, verification and validation methods to overcome limitations of:
 - Formal methods
 - Brute-force testing
 - Non-deterministic learning systems
- Robust threat assessment sensing and signal processing to reach zero false negatives and nearzero false positives
- Robust control system fault detection, identification and accommodation, within 0.1 s response
- Ethical decision making for robotics
- Cyber-security protection

Threat Assessment Challenge

- Detect and respond to every hazard, including those that are hard to see:
 - Negative obstacles (deep potholes)
 - Inconspicuous threats (brick in tire track)
- Ignore conspicuous but innocuous targets
 - Metallized balloon
 - Paper bag
- Serious challenges to sensor technologies
- How to set detection threshold sensitivity to reach zero false negatives (missed hazards) and near-zero false positives?

Much Harder than Commercial Aircraft Autopilot Automation

Measure of Difficulty – Orders of Magnitude	Factor
Number of targets each vehicle needs to track (~10)	1
Number of vehicles the region needs to monitor (~10 ⁶)	4
Accuracy of range measurements needed to each target (~10 cm)	3
Accuracy of speed difference measurements needed to each target (~1 m/s)	1
Time available to respond to an emergency while cruising (~0.1 s)	2
Acceptable cost to equip each vehicle (~\$3000)	3
Annual production volume of automation systems (~10 ⁶)	- 4
Sum total of orders of magnitude	10
<u>1</u>	

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

What to do now?

- Focus on connected vehicle capabilities to provide technology for cooperation
- For earliest public benefits from automation, focus on transit and trucking applications in protected rights of way
 - Professional drivers and maintenance
 - Direct economic benefits
- Capitalize on managed lanes to concentrate equipped vehicles together
- Develop enabling technologies for Level 5 automation (software verification and safety, realtime fault identification and management, hazard detection sensing,...)