

1st Symposium on "Management of Future Freeways and Urban Traffic Systems"

Control of Freeway Corridors: Objectives, Performance Measures, Strategies

Alex Skabardonis UC Berkeley

> Chania, Greece June 2, 2016

Freeway Corridor management

Background/Problem Statement National Programs: ICM

- Signalized Intersections: Performance Measurement
- Freeway-Arterial Coordination
- Looking Ahead

Background: Corridor Management

Cooperative management of freeways and adjacent arterial networks

Los Angeles, Smart Corridor 1988

Background: Corridor Management

Corridor Traffic Management & Information Vision

USDOT ICM Program (1)

- Multimodal operations
- Complex modeling approaches
- Operational procedures/plans
- Institutional constraints
- Decision support systems
- Limited field evaluation
- Research Gaps
 - Data analytics
 - Control Algorithms

US-75 ICM Corridor, Dallas, TX

I-15 ICM Corridor, San Diego, CA

CA CC I-210: Decision Support

Urban Arterials/Networks: Traffic Flow Variability vs. Control

- Fixed-Time Plans
- Time of Day (TOD)
- A No Detection
 - May be actuated
 - Fixed time plans
- **B** Traffic responsive plan selection
 - System detection
 - Traffic responsive control
- **C** On-line timing development
 - Approach & system detection
 - Adaptive control
- **D** Measure & predict arrivals per cycle
 - Extensive detection

Arterial Networks: Traffic Control

- Most signal systems fixed-time control
 - Limited data
 - Out-dated timing plans
- Adaptive systems
 - High cost
 - Complex to understand and operate

Source: Alek Stevanovic, NCHRP Synthesis 403

Approach: Use of HR data*

- Performance measures for operators and travelers
 - Use of existing infrastructure
 - No interference with controller operation
- Improving Signal Timing Plans
 - Performance derived signal settings
 - Robust timing plans
- On-Going/Future Work
 - Traffic volume prediction
 - Safety (red light running)
 - Multimodal (pedestrians, bicycles)

*Work with P. Varaiya & Sensys Networks "Management of Urban Traffic with H-R Data" IEEE ITSC 2014

Data Collection System

Selected Test Site: Beaufort, SC

Traffic Volume Patterns

Wasted green time: time phase is active with no vehicle present and conflicting phase call Vehicle arrivals: % arrivals on green

Performance: Average Delay (sec/veh) HCM Level of Service (LOS)

Performance: V/c and LOS

HR Data and Timing Plan Development

Improving Signal Timing Plans

- Volume clustering best set of volumes for the three timing plans available
- New timing plans reduce intersection signal delay by 10% on average*

Summary: Use of HR data

- Performance measures for operators and travelers
 - Use of existing infrastructure
 - No interference with controller operation
- Improving Signal Timing Plans
 - Performance derived signal settings
 - Robust timing plans
- On-Going/Future Work
 - Traffic volume prediction
 - Safety (red light running)
 - Multimodal (pedestrians, bicycles)

II. Freeway – Arterial Coordination

- Important element of corridor management
- Existing coordination guidelines mostly address institutional issues (*example: FHWA Handbook*)
- Most approaches consist of scenarios with "flush" signal timing plans on arterials in case of freeway incidents
- Lack of Methodologies for Freeway-Arterial Interactions
- Spillbacks to- from ramps

Freeway Ramp Metering: Impacts

- Excessive delays to on-ramp vehicles
- Spillback to local streets
- Queue override –diminishes ramp metering benefits

Freeway Mainline

On Ramp Queues

TOT CALIFORNIA TOTALINIA TOT CALIFORNIA TOTALINA TOTALINA TOTALINA TOTALINA TOTALINA TOTALINA TOTALINA TOTALINA TOTALINA TOTAL

On-Ramp Queue Control Regulator

Improvements: 6% Travel Time/ 16% Delay Reduction

"Design, Field Implementation and Evaluation of Adaptive Ramp Metering Strategies," PATH Research Report UCB-2005-2

"Analysis of Queue Estimation Methods Using Wireless Magnetic Sensors, " TRR 2229, 2011

Proposed on-Ramp Access Control (1)

Determine the signal settings to avoid queue spillover from ramp metering and result in queue override

Constraints

Serve the traffic demand on arterial phases Arterial link storage (arterial spillback) Minimum phase green times

Proposed on-Ramp Access Control (2)

Minimize the ratio of actual and desired green times per signal phase

Desired green time: minimum green time to serve the traffic demand

Proposed on-Ramp Access Control (3)

Constraints

- Minimum green time constraint: $g_{ik}(t) \ge G_{ik,min}$
- Cycle length constraint: $\sum_{i} g_{ik}(t) = C$

Proposed on-Ramp Access Control (4)

Constraint: Arterial link storage

Test Site: I-680, San Jose CA

• **AIMSUN Microscopic Simulator**

SYSTEM /MOE

Looking Ahead: Connected Vehicles

"Here I am" V2V and V2I

V2I Example: SPaT message Application: Dynamic Speed Advisory (source: UC & BMW)

Field Test Results*

Uninformed Driver (Baseline Scenario): no speed recommendation

Informed Driver: follow speed recommendation

Individual Vehicle Priority & Uninformed Driver: no speed recommendation. Intersection adapts timing with individual vehicle priority

Individual Vehicle Priority & Informed Driver: follow speed recommendation. Intersection adapts timing with individual vehicle priority

	Uninformed Driver	Informed Driver	Uninformed Driver &APIV	Informed Driver &APIV
Fuel (L/100KM)	10.23	8.84	8.28	7.33
Improvement	Base Scenario	-13.60%	-19.10%	-28.40%

*https://www.fhwa.dot.gov/multimedia/research/advancedresearch/index.cfm

"Advanced Signal Control Strategies," PATH Research Report UCB-2013-3

