Road Vehicle Automation: Opportunities and Challenges

Steven E. Shladover, Sc.D.
California PATH Program
Institute of Transportation Studies
University of California, Berkeley

June 2017

Outline

- Automation potential and limitations
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation (not autonomy) is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Automation Potential (Hopes)

- Safety improvements (overcoming human perception and judgment limitations)
- Traffic flow improvements (smoother and higher capacity traffic)
- Energy and emission reductions
- Reducing driving stress and waste of time (ability to do other things)
- Labor saving/economics (eliminating driver) labor costs in commercial applications)

Automation Limitations (Hard Reality)

- Unsolved technological problems
 - Software safety, validation, and verification
 - Environment perception highly dependable hazard detection and anticipation
 - Cybersecurity, robot ethics,....
- Economics costs to solve above problems
- User interactions
 - Safety proper mental models of limitations
 - Acceptance/trust of automation
 - Interactions with pedestrians and bicyclists
 - Inflated expectations

Outline

- Automation potential and limitations
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Terminology Problems

- Common misleading, vague to wrong terms:
 - "driverless" but generally they're not!
 - "self-driving"
 - "autonomous" 4 common usages, but different in meaning (and 3 are wrong!)
- Central issues to clarify:
 - Roles of driver and "the system"
 - Degree of connectedness and cooperation
 - Operational design domain (ODD)

Definitions (per Oxford English Dictionary)

autonomy:

- 1. (of a state, institution, etc.) the right of self-government, of making its own laws and administering its own affairs

 2. (biological) (a) the condition of being controlled only by its own
- laws, and not subject to any higher one; (b) organic independence 3. a self-governing community.

autonomous:

- 1. of or pertaining to an autonomy
- possessed of autonomy, <u>self governing, independent</u>
 (biological) (a) conforming to its own laws only, and not subject to higher ones; (b) independent, i.e., not a mere form or state of some other organism.
- automate: to apply automation to; to convert to largely automatic operation

automation: automatic control of the manufacture of a product through a number of successive stages; the application of automatic control to any branch of industry or science; by extension, the use of electronic or mechanical devices to replace human labour

Autonomous and Cooperative ITS

Taxonomy of Levels of Automation

Driving automation systems are categorized into levels based on:

- 1. Whether the driving automation system performs either longitudinal or lateral vehicle motion control.
- 2. Whether the driving automation system performs both longitudinal and the lateral vehicle motion control simultaneously.
- 3. Whether the driving automation system *also* performs object and event detection and response.
- 4. Whether the driving automation system *also* performs dynamic driving task *fallback*.
- 5. Whether the driving automation system can drive everywhere or is limited by an operational design domain (ODD).

Operational Design Domain (ODD)

The specific conditions under which a driving automation system is designed to function, including:

- Roadway type
- Traffic conditions and speed range
- Geographic location (boundaries)
- Weather and lighting conditions
- Availability of necessary supporting infrastructure features
- Condition of pavement markings and signage
- (and potentially more...)

Driving Automation System Has To Be Defined by BOTH Level of Automation and ODD

Example Systems at Each Automation Level

(based on SAE J3016 - http://standards.sae.org/j3016_201609/)

Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> function and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist (Mercedes, Tesla, Infiniti, Volvo) Parking with external supervision	Must monitor driving environment (system nags driver to try to ensure it)
3	Traffic Jam Pilot	May read a book, text, or web surf, but be prepared to intervene when needed
4	Highway driving pilot Closed campus "driverless" shuttle "Driverless" valet parking in garage	May sleep, and system can revert to minimum risk condition if needed
5	Ubiquitous automated taxi Ubiquitous car-share repositioning	Can operate anywhere with no driver needed

Outline

- Automation potential and limitations
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Automation Is a Tool for Solving Transportation Problems

- Alleviating congestion
 - Increase capacity of roadway infrastructure
 - Improve traffic flow dynamics
- Reducing energy use and emissions
 - Aerodynamic "drafting"
 - Improve traffic flow dynamics
- Improving safety
 - Reduce and mitigate crashes

...BUT the vehicles need to be connected

Alleviating Congestion

- Typical U.S. highway capacity is 2200 vehicles/hr/lane (or 750 trucks/hr/lane)
 - Governed by drivers' car following and lane changing gap acceptance needs
 - Vehicles occupy only 5% of road surface at maximum capacity
- Stop and go disturbances (shock waves) result from drivers' response delays
- V2V Cooperative automation provides shorter gaps, faster responses, and more consistency
- <u>I2V Cooperation</u> maximizes bottleneck capacity by setting most appropriate target speed
- → Significantly higher throughput per lane
- → Smooth out transient disturbances

Reducing Energy and Emissions

- At highway speeds, half of energy is used to overcome aerodynamic drag
 - Close-formation automated platoons can save 10% to 20% of total energy use
- Accelerate/decelerate cycles waste energy and produce excess emissions
 - Automation can eliminate stop-and-go disturbances, producing smoother and cleaner driving cycles
- BUT, this only happens with V2V cooperation

Improving Safety

- 94% of crashes in the U.S. are caused by driver behavior problems (perception, judgment, response, inattention) and environment (low visibility or road surface friction)
- Automation avoids driver behavior problems
- Appropriate sensors and communications are not vulnerable to weather problems
- BUT, current traffic safety sets a very high bar:
 - 3.4 M vehicle <u>hours</u> between fatal crashes (390 years of non-stop 24/7 driving)
 - 61,400 vehicle <u>hours</u> between injury crashes (7 years of non-stop 24/7 driving)
 - Comparable values for Korea are factor of 2,5 to 3

 lower

Outline

- Automation potential and limitations
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Cooperation Augments Sensing

- Autonomous vehicles are "deaf-mute" drivers
- Cooperative vehicles can "talk" and "listen" as well as "seeing" (using 5.9 GHz DSRC comm.)
 - NHTSA regulatory mandate in process in U.S.
- Communicate vehicle performance and condition directly rather than sensing indirectly
 - Faster, richer and more accurate information
 - Longer range than sensors
- Cooperative decision making for system benefits
- Enables closer separations between vehicles
- Expands performance envelope safety, capacity, efficiency and ride quality

Examples of Performance That is Only Achievable Through Cooperation

- Vehicle-Vehicle Cooperation
 - Cooperative adaptive cruise control (CACC) to eliminate shock waves
 - Automated merging of vehicles, starting beyond line of sight, to smooth traffic
 - Multiple-vehicle automated platoons at short separations, to increase capacity
 - Truck platoons at short enough spacings to reduce drag and save energy
- Vehicle-Infrastructure Cooperation
 - Speed harmonization to maximize flow
 - Speed reduction approaching queue for safety
 - Precision docking of transit buses
 - Precision snowplow control

Example 1 – Production Autonomous ACC (at minimum gap 1.1 s)

Response of Production ACC Cars

Example 2 – V2V Cooperative ACC (at minimum gap 0.6 s)

V2V CACC Responses (3 followers)

Distribution of Time Gap Selections by General Public Drivers of CACC

Results from PATH experiment with 16 drivers in 2009

Lane Capacity vs. CACC Market Pen. Based on Gaps Chosen by Drivers

PATH Automated Platoon Longitudinal Control and Merging (V2V)

1997

Significant Lane Capacity Increases From Close-Formation Platoons

- Results from analysis with 100% market penetration of cars in platoons
- Idealized analysis without including lane changing and merging, so achievable capacity will be about 75% of this

PATH V2V Truck Platoons (2003, 2010)

2 trucks, 3 to 10 m gaps

3 trucks, 4 to 10 m gaps

Heavy Truck Energy Savings from Close-Formation Platoon Driving

2016 - CACC on 3 Class-8 Trucks

 FHWA EARP "Partially Automated Truck Platooning" (PATP) Project, PATH collaboration with Volvo Group

Outline

- Automation potential and limitations
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

No Automation and Driver Assistance (Levels 0, 1)

- Primary safety advancements likely at these levels, <u>adding</u> machine vigilance to driver vigilance
 - Safety warnings based on ranging sensors
 - Automation of one function facilitating driver focus on other functions
- Driving comfort and convenience from assistance systems (ACC)
- Traffic, energy, environmental benefits depend on cooperation
- Widely available on cars and trucks now

Partial Automation (Level 2) Impacts

- Primarily on limited-access highways
- Somewhat increased driving comfort and convenience (but driver still needs to be actively engaged)
- Possible safety increase, depending on effectiveness of driver engagement
 - Safety concerns if driver tunes out or abuses
- (only if cooperative) Increases in energy efficiency and traffic throughput
- When? Now (Mercedes, Tesla, Infiniti, Volvo...)

Intentional Mis-Uses of Level 2 Systems (YouTube videos posted by mis-users)

Mercedes S-Class

Infiniti Q50

Let's see how well the Active Lane Control works on the new Infiniti Q50S

Conditional Automation (Level 3) Impacts

- Driving comfort and convenience increase
 - Driver can do other things while driving, so disutility of travel time is reduced
 - Limited by requirement to be able to retake control of vehicle in a few seconds when alerted
- Safety uncertain, depending on ability to retake control in emergency conditions
- (only if cooperative) Increases in efficiency and traffic throughput
- When? Audi "traffic jam pilot" planned later this year

High Automation (Level 4) Impacts – General-purpose light duty vehicles

- Only usable in some places (limited access highways, maybe only in managed lanes)
- Large gain in driving comfort and convenience on available parts of trip (driver can sleep)
 - Significantly reduced value of time
- Safety improvement, based on automatic transition to minimal risk condition
- (only if cooperative) Significant increases in energy efficiency and traffic throughput from close-coupled platooning
- When? Starting 2020 2025?

High Automation (Level 4) Impacts – Special applications

- Buses on separate transitways
 - Narrow right of way easier to fit in corridors
 - Rail-like quality of service at lower cost
- Heavy trucks on dedicated truck lanes
 - (cooperative) Platooning for energy and emission savings, higher capacity
- Automated (driverless) valet parking
 - More compact parking garages
- Driverless shuttles within campuses or pedestrian zones
 - Facilitating new urban designs and tranşit access
- When? Could be just a few years away

Low-Speed Shuttle in La Rochelle – Vehicle and Infrastructure Combined

Vehicle-Infrastructure Protection for Level 4 Urban Automation

Full Automation (Level 5) Impacts

- Electronic taxi service for mobility-challenged travelers (young, old, impaired)
- Shared vehicle fleet repositioning (driverless)
- Driverless urban goods pickup and delivery
- Full "electronic chauffeur" service
- Ultimate comfort and convenience
 - Travel time disutility almost disappears
- (if cooperative) Large energy efficiency and road capacity gains
- When? Many decades... (Ubiquitous operation without driver is a huge technical challenge)

Personal Estimates of Market <u>Introductions</u> ** based on technological feasibility **

Fastest changes in automotive market: Regulatory mandate on new cars

Figure 1: US seat belt adoption curves

Source: Gargett, Cregan and Cosgrove, Australian Transport Research Forum 2011

Historical Market Growth Curves for Popular Automotive Features (35 years)

Figure 3.3.10. Diffusion of new technologies in the US car industry (in percent of car output). (Source: Jutila and Jutila, 1986.)

Outline

- Automation potential and limitations
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Traffic Safety Challenges for High and **Full Automation**

- Extreme external conditions arising without advance warning (misbehavior of another vehicle, dropped load from truck, lightning,...)
- NEW CRASHES caused by automation:
 - Strange circumstances the system designer could not anticipate
 - Software bugs not exercised in testing
 - Undiagnosed faults in the vehicle
 - Catastrophic failures of vital vehicle systems (loss of electrical power...)
- Driver not available for fallback

Dynamic External Hazards (Examples)

- Behaviors of other vehicles:
 - Entering from blind driveways
 - Violating traffic laws
 - Moving erratically following crashes with other vehicles
 - Law enforcement (sirens and flashing lights)
- Pedestrians (especially small children)
- Bicyclists
- Officers directing traffic
- Animals (domestic pets to large wildlife)
- Opening doors of parked cars
- Unsecured loads falling off trucks
- Debris from previous crashes
- Landslide debris (sand, gravel, rocks)
- Any object that can disrupt vehicle motion

Environmental Conditions (Examples)

- Electromagnetic pulse disturbance (lightning)
- Precipitation (rain, snow, mist, sleet, hail, fog,...)
- Other atmospheric obscurants (dust, smoke,...)
- Night conditions without illumination
- Low sun angle glare
- Glare off snowy and icy surfaces
- Reduced road surface friction (rain, snow, ice, oil...)
- High and gusty winds
- Road surface markings and signs obscured by snow/ice
- Road surface markings obscured by reflections off wet surfaces
- Signs obscured by foliage or displaced by vehicle crashes

Internal Automation System Faults – Functional Safety Challenges

Solvable with a lot of hard work:

- Mechanical and electrical component failures
- Computer hardware and operating system glitches
- Sensor condition or calibration faults

Requiring more fundamental breakthroughs:

- System design errors
- System specification errors
- Software coding bugs

Safety Challenges for Full Automation

- Must be "significantly" safer than today's driving baseline (2X? 5X? 10X?)
 - Fatal crash MTBF > 3.4 million vehicle hours
 - Injury crash MTBF > 61,400 vehicle hours
- Cannot <u>prove</u> safety of software for safety-critical applications – that technology does not exist
- Complexity cannot <u>test</u> all possible combinations of input conditions and their timing
- How many hours of testing would be needed to provide statistically significant evidence of safety better than today?
- How many hours of <u>continuous</u>, <u>unassisted</u> automated driving have been achieved in real traffic under diverse conditions?

Evidence from Recent Testing

- California DMV testing rules require annual reports on safety-related disengagements
- Waymo (Google) far ahead of others:
 - All disengagements reconstructed in detailed simulations (what if allowed to continue?)
 - Simulations showed ~5000 miles between critical events in 2016 (2.5 factor improvement over 2015)
- Human drivers in U.S. traffic safety statistics:
 - ~2 million miles per injury crash
 - 100 million miles per fatal crash

Needed Breakthroughs

- Software safety design, verification and validation methods to overcome limitations of:
 - Formal methods
 - Brute-force testing
 - Non-deterministic learning systems
- Robust threat assessment sensing and signal processing to reach zero false negatives and nearzero false positives
- Robust control system fault detection, identification and accommodation, within 0.1 s response
- Ethical decision making for robotics
- Cyber-security protection

Threat Assessment Challenge

- Detect and respond to every hazard, including those that are hard to see:
 - Negative obstacles (deep potholes)
 - Inconspicuous threats (brick in tire track)
- Ignore highly visible but harmless targets
 - Metallized balloon
 - Paper bag
- Serious challenges to sensor technologies
- How to set detection threshold sensitivity to reach zero false negatives (missed hazards)
 and near-zero false positives?

Much Harder than Commercial Aircraft Autopilot Automation

Measure of Difficulty – Orders of Magnitude	Factor
Number of targets each vehicle needs to track (~10)	1
Number of vehicles the region needs to monitor (~106)	4
Accuracy of range measurements needed to each target (~10 cm)	3
Accuracy of speed difference measurements needed to each target (~1 m/s)	1
Time available to respond to an emergency while cruising (~0.1 s)	2
Acceptable cost to equip each vehicle (~\$3000)	3
Annual production volume of automation systems (~106)	- 4
Sum total of orders of magnitude	10

Outline

- Automation potential and limitations
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

What to do now?

- Focus on deploying connected vehicle capabilities to provide technology for cooperation
- For earliest public benefits from automation, focus on public transit and trucking applications in protected rights of way
 - Professional drivers and maintenance
 - Direct economic benefits
- Capitalize on managed lanes to concentrate equipped vehicles together
- Develop enabling technologies for Level 5 automation (software verification and safety, real-time fault identification and management, hazard detection sensing,...)