# Fundamental Issues in Road Transport Automation

Steven E. Shladover and Richard Bishop

ITS America Webinar July 15, 2015

#### **Outline**

- Diversity of automation concepts
- State of the art and of the market
- Technological maturity
- Non-technical issues
- Business models and public/private roles
- Topics needing more attention

## **Diversity of Automation Concepts**

- Diversity impedes mutual understanding until we get specific about:
  - Goals to be served by the automation system
  - Roles of driver and automation system
  - Complexity of operating environment
- Need to get around misunderstandings caused by misleading, vague and inaccurate terminology in common use: "driverless", "self-driving", "autonomous"...

# Goals that Could be Served by an Automation System

- driving comfort and convenience
- freeing up time heretofore consumed by driving
- reducing vehicle user costs
- reducing user travel time
- improving vehicle user safety or broader traffic safety
- enhancing and broadening mobility options
- reducing traffic congestion in general
- reducing energy use and pollutant emissions
- making more efficient use of existing road infrastructure
- reducing cost of future infrastructure and equipment

#### **SAE J3016 Definitions – Levels of Automation**

| S.A.E.<br>Level                                                      | Name                      | Narrative Definition                                                                                                                                                                                                                                                                 | Execution of<br>Steering/<br>Acceleration/<br>Deceleration | Monitoring of<br>Driving<br>Environment | Fallback<br>Performance of<br>Dynamic<br>Driving Task | System<br>Capability<br>( <i>Driving Mod</i> es) |
|----------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------------------------|
| Human driver monitors the driving environment                        |                           |                                                                                                                                                                                                                                                                                      |                                                            |                                         |                                                       |                                                  |
| 0                                                                    | No<br>Automation          | the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems                                                                                                                                      | Human driver                                               | Human driver                            | Human driver                                          | n/a                                              |
| 1                                                                    | Driver<br>Assistance      | the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task           | Human driver<br>and system                                 | Human driver                            | Human driver                                          | Some driving<br>modes                            |
| 2                                                                    | Partial<br>Automation     | the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task | System                                                     | Human driver                            | Human driver                                          | Some driving<br>modes                            |
| Automated driving system ("system") monitors the driving environment |                           |                                                                                                                                                                                                                                                                                      |                                                            |                                         |                                                       |                                                  |
| 3                                                                    | Conditional<br>Automation | the driving mode-specific performance by an<br>automated driving system of all aspects of the<br>dynamic driving task with the expectation that the<br>human driver will respond appropriately to a request<br>to intervene                                                          | System                                                     | System                                  | Human driver                                          | Some driving<br>modes                            |
| 4                                                                    | High<br>Automation        | the driving mode-specific performance by an<br>automated driving system of all aspects of the<br>dynamic driving task, even if a human driver does<br>not respond appropriately to a request to intervene                                                                            | System                                                     | System                                  | System                                                | Some driving<br>modes                            |
| 5                                                                    | Full<br>Automation        | the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver                                                                                             | System                                                     | System                                  | System                                                | All driving<br>modes                             |

### **Example Systems at Each Automation Level**

| Level | Example Systems                                                              | Driver Roles                                                                 |
|-------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1     | Adaptive Cruise Control OR Lane Keeping Assistance                           | Must drive <u>other</u> function and monitor driving environment             |
| 2     | Adaptive Cruise Control AND Lane<br>Keeping Assistance<br>Traffic Jam Assist | Must monitor driving environment (system nags driver to try to ensure it)    |
| 3     | "Traffic Jam Pilot" Driverless valet parking in garage                       | May read a book, text, or web surf, but be prepared to intervene when needed |
| 4     | "Highway driving pilot" Closed campus shuttle (driverless)                   | May sleep, and system can revert to minimum risk condition if needed         |
| 5     | Automated taxi (even for children) Car-share repositioning system            | No driver needed                                                             |

# Automated Driving: Complexity of Operating Environment

- Degree of segregation from other road users
  - Exclusive guideways (automated people movers)
  - Dedicated highway lanes
  - Protected campus/special-purpose pathways
  - Enclosed parking garages
  - Pedestrian zones
  - Urban streets
- Traffic complexity (speed, density, mix of users)
- Weather and lighting conditions
- Availability of I2V, V2V data
- Standardization of signage and pavement markings



# **Today's Crash Avoidance Systems Form the Foundation for AV**

(increasingly becoming standard equipment)

- Electronic Stability
   Control
- Lane Centering
- Automatic Braking
  - front
  - rear

- Electronic Stability
   Blind spot Monitoring
  - Pedestrian Detection
  - Fatigue Alert
  - Night Vision
  - Speed Sign Recognition



# Today's Crash Avoidance Systems Form the Foundation for AV

- Electronic Stability
   Control
- Lane Centering
- Automatic Braking
  - rear
  - front

- Blind spot Monitoring
- Pedestrian Detection
- Fatigue Alert
- Night Vision
- Speed Sign Recognition

Automatic Emergency Braking: 14% reduction in crashes.

# **Automated Driving: Key Technology Elements**

- Sensors
  - radar, stereo/mono cameras, lidar
- Image processing systems detect traffic signal status relevant to the host vehicle's lane
- Dynamic maps play an important role, refreshed through car data sharing.
- Data via V2X communications enhances operations.
  - enables some applications

**Automated Driving: Enabling Technology** 



Source: Texas Instruments ADAS Solutions Guide

# Automated Driving: Supporting Technology



Source: Texas Instruments ADAS Solutions Guide

## State of the Art: Passenger Cars

- Highway Operation
  - prototypes driving in-lane, changing lanes, merging
- Street Operation
  - prototypes driving wide range of city streets
  - handling elements such as signalized intersections, roundabouts
- Level 4 Automated Chauffeuring
  - seen as a natural evolution by some OEMs
  - pursued by Google, Uber, others
  - street level automated driving
  - low speed
  - limited geographic area

### State of the Market: Passenger Cars

- Now available: limited Level 2 highway use systems
  - Simultaneous adaptive cruise control and lane centering (full speed range)
    - handles limited highway curvature
    - Acura, Infiniti, Mercedes, Hyundai
  - Traffic Jam Assist
    - low speed automated lateral/longitudinal control
    - driver instructed to keep hands on wheel, otherwise system disables
    - BMW, Mercedes, Volkswagen, Volvo Cars

## State of the Market: Passenger Cars

- Level 2 highway use systems available by end of decade
  - full speed range, full range of normal highway curvatures
  - some approaches will actively monitor the driver's attention/gaze and warn if the driver does not have eyes on the road.
  - Some systems will simply drive the vehicle in-lane;
     others will also do lane changes as needed.
- OEM announcements include
  - "mid-decade": Toyota
  - 2016: Audi, GM
  - 2018: Nissan (with lane changing)
  - 2020: BMW
- Aftermarket systems
  - small start-ups active
  - bringing systems to market successfully questionable

### State of the Market: Passenger Cars

- Level 3 highway use systems
  - 2017: Volvo "Drive Me"
    - 100 vehicles for use by public
    - limited to specific roads
- Level 4 Automated Valet Parking
  - 2016: Nissan

# **Level 4 Automated Chauffeuring**

- Small scale systems operating now in Europe
  - CityMobil2
    - Lausanne
    - La Rochelle
    - Vantaa
    - Milan
  - Innovate UK
    - Bristol
    - Greenwich
    - Milton-Keynes
  - Further deployments planned
- Singapore: testing underway
- Google pilot testing likely by end decade
  - California regulations allowing public use of AV's a key factor
- Uber likely to become active
  - recent investment to create Pittsburgh R&D center

# **AV Use Cases for Heavy Trucks**

#### **On-Road**

- Fuel Economy
  - Driver Assistive Truck Platooning
    - Level 1 (hands on, feet off)
    - Level 2 (hands off, feet off)
- Productivity
  - One-Driver Platooning (no driver in followers)
  - Traffic Jam Assist
  - Automated Movement in Queue
  - Automated Trailer Backing
  - Highway Pilot
  - Parcel Delivery Automation

# Constrained Environments

- Inside <> Outside
- Drayage
- Mine Hauling
- Dispersed Local Sites
  - manufacturing
  - distribution

#### State of the Art: Trucks

- Level 1 close-headway platooning systems under development
  - multiple demo's have occurred
  - USDOT currently funding two Level 1 research projects
    - Caltrans/UC-Berkeley
    - Auburn University
  - European government activity, R&D
- Level 3 prototypes shown by OEMs
  - aimed at long haul freight transport on well structured highways











# Near Term: Truck Platooning



- Two truck platoons
- Combining vehicle-vehicle communications with radar
  - ensures that braking by front truck occurs simultaneous with follower truck
- Enables safe ops at close following distances (10-15 meters)
  - electronic tow bar
- Significant fuel savings due to aerodynamics
  - aerodynamic drag is ~65% of fuel use at 65 mph
- Follower truck driver still responsible for steering (Level 1 automation)





North American Council for Freight Efficiency (2013). CR England Peloton Technology platooning test Nov 2013.

# **Driver Assistive Truck Platooning**



### State Regulations for Truck Platooning

- Low level of automation eases the way for platooning.
- State-level following distance laws are key
  - 28 states: no minimum following distance
  - 5 states: ready for pilot testing (UT, MI, NV, AL, TX)
  - 2 states: legislation in process (FL, CA)
  - 7 states: positioning for trials but early in process
- National associations involved to create model legislation

### State of the Market: Trucking

- Automatic Emergency Braking now required on new heavy trucks in Europe.
- Truck Platooning
  - Level 1 systems (longitudinal control only)
  - radar, V2V enable close following
  - substantial fuel economy benefits compelling to industry
- Commercial offerings expected within 2-3 years
  - pilot testing in U.S. likely to begin this year

### State of the Market: Summary

- Two parallel paths:
- Everything Somewhere (Google, CityMobil, others)
  - Level 4 car-as-a-service
  - constrained geographic area
  - fleet likely to need frequent servicing and testing to ensure safe operation is maintained
- Something Everywhere (vehicle OEMs)
  - classic incremental approach
  - systems are brought to market capable of operating on "any" road (at least of a certain type)
  - no limitation re geographic area
- Truck AV a blend of both, depending on Use Case

## Infrastructure Support

- Importance for automation product introduction under debate
  - essential to gain transportation benefits
- Various types of support
  - I2V (and V2V) real-time data
  - Physical protection from hazards
  - Digital infrastructure (static and dynamic data)
  - "sensor friendly" signage and markings, better lighting
  - Higher maintenance standards
- Scenarios for providing support
  - Private providers
  - Industry and users push public agencies to prioritize this support
  - Public agencies provide it based on perceived public benefits

# **Organizational Framework**

- Vehicle manufacturers and their suppliers
- Other technology industry companies
- Regulators and public authorities
- Infrastructure/road operators
- Public transport operators
- Goods movement industry
- Users/private drivers
- Vulnerable road users (peds, bikes)
- Shared vehicle and fleet operators
- Insurers
- (Big data) service providers
- Research/academic
- Legal experts

# **Technological Maturity (1/2)**

- Challenges for Level 3+ automation (cannot expect the driver to be the backup)
- Technologies needing development, but no fundamental breakthroughs:
  - Wireless communications (DSRC, 4G+,...)
  - Localization (GNSS, SLAM)
- More challenging requirements:
  - Human factors/driver interface: safe control transitions, deterring misuse and abuse, encouraging vigilance, facilitating correct mental models of system behavior
  - Cyber security (and privacy)

# **Technological Maturity (2/2)**

- Breakthroughs potentially needed (in order of increasing difficulty):
  - Fault detection, identification and accommodation (within cost constraints)
  - Ethical considerations in computer control
  - Environment perception and threat assessment (minimizing false positives and false negatives under diverse conditions with affordable sensors, predicting future motions of target objects)
  - Software safety (designing, developing, verifying and validating complex software systems – What mix of formal methods, simulation and testing? How to "prove" a safety goal has been met?)

# Non-Technological Issues

- Public policy
- Legal issues
- Vehicle certification and licensing
- Public acceptance
- Insurance
- Benefits and impacts

### **Public Policy Issues**

- Regulations at national vs. lower levels?
- Changes in driver licensing and insurance?
- Changes in vehicle registration rules?
- Restrictions to subsets of the road network?
- Changes in motor vehicle codes?
- Priority for infrastructure modifications?
- More uniform infrastructure standards?
- Business models for infrastructure-vehicle cooperation?
- Public financial incentives for AV use?
- Interactions with law enforcement?
- Land use and parking changes?
- Changes in disutility of travel time?

## Legal Issues

- Determining responsibility for failures, especially with cooperative automation systems
- Shift of some liability from drivers to others
- Importance of instructions to driver about system capabilities and limitations
- Relaxing Vienna Convention rules (for other countries)
- No show-stoppers

## **Vehicle Certification & Licensing (1/2)**

- How to determine a specific system is "safe enough"?
  - Defining safety requirements (no less safe than today, and maybe better):
    - 3 M hour fatal crash MTBF
    - 65 K hour injury crash MTBF
  - How to verify that requirement has been met?
- Serious challenges:
  - No technical standards to cite
  - Naturalistic testing is unaffordable to collect enough data on rare safety-critical events
  - Frequent updates requiring new certification?

## Vehicle Certification & Licensing (2/2)

#### Possible approaches:

- Manufacturer self-certification
- Manufacturer self-certification + make data public
- Third-party review of manufacturer functional safety processes
- Third-party review of detailed design
- Comprehensive acceptance test by public agency or third party

# **Public Acceptance Issues**

- Some highly enthusiastic, some intensely hostile
- Hard to predict based on previous automotive innovations because of change in traveling or "driving" experience
- J.D. Power survey (2014) 24% of 15,000 respondents interested at \$3 K price premium
  - 41% of Gen. Y (1977-95)
  - 25% of Gen. X (1965-76)
  - 13% of Boomers (1947-64)

#### **Insurance Issues**

- If crashes are reduced, auto insurance business could shrink
- Some risk transferred to manufacturers
- Risk associated more with vehicle characteristics than driver performance
- Easier to assign fault based on event data recorders
- Effects will vary, depending on different state regulations

# **Assessing Benefits and Impacts**

- Diverse, complex and highly uncertain impacts
- Many assumptions needed to make predictions need sensitivity studies
- Market uncertainties
  - AV development timing of feasibility of different capabilities
  - Customer willingness to pay for each AV capability
- Societal/institutional uncertainties
  - Availability of public infrastructure support
  - Effects of commercially successful AV systems on traffic flow, energy and emissions
  - Safety, accounting for system faults and ped/bike interactions
  - Public preferences for housing/urban form
  - Employment patterns and telecommuting
  - Elasticity of travel demand with respect to AV travel time

#### **Business Models and Public-Private Roles**

- "Standard" approach of private vehicles on public infrastructure (roads), with limited interaction
- Automation benefits from closer coupling of vehicles and infrastructure, opening integrated business models:
  - Common ownership of vehicles and infrastructure, providing transportation service (like railroads)
- Financing infrastructure elements:
  - Joint public-private financing
  - Road user charging
  - New public-private partnerships
  - Investments from information technology industry seeking access to "driver" eyeballs

## Research Needs – Technological (1/2)

- Robust wireless communication technologies
- Highly dependable vehicle localization
- Human factors and driver interfaces to support mode awareness and safe mode transitions
- Methods to efficiently develop and update highdefinition map data
- Incorporating ethical considerations into control system design

## Research Needs - Technological (2/2)

- Fault detection, identification and accommodation methods to enhance safety when fault conditions arise
- Cybersecurity methods (applicable to all modern vehicles)
- Environment perception technologies to provide extremely low rates of false positive and false negative hazard identifications
- Software safety design, development, verification and validation methods that can be implemented affordably.

### Research Needs - Non-Technological (1/3)

- What to regulate at the national level vs. at state/regional level?
- Should driver licensing and testing requirements change?
- Should non-drivers be allowed to travel unaccompanied in AVs?
- Should an AV be permitted to operate on all public roads, or only on specific roads?
- How to determine that a specific AV can be used on public roads?
- What vehicle codes should be modified to account for enhanced AV capabilities?

### Research Needs - Non-Technological (2/3)

- How should public agencies prioritize investments in modifying roadway infrastructure for AVs?
- Should government agencies apply more uniform standards to roadway and roadside infrastructure?
- Should new organizational and financing models be used to facilitate infrastructure-vehicle cooperation for AV operations?
- Public financial incentives for purchase and use of AVs?
- How should law enforcement interact with AVs?
- Legal issues such as vehicle codes?
- Should laws be modified to ease liability concerns?

### Research Needs – Non-Technological (3/3)

- How should minimum safety requirements be determined?
- How should compliance with safety requirements be determined?
- Who should certify the safety of AVs?
- How much will the public be willing to pay for various levels of driving automation?
- How rapidly will the market grow for the various levels of driving automation?
- How will the insurance industry have to adapt based on changes in crash rates and causes?

# **Big Unresolved Questions (1/2)**

- How much support and cooperation do AVs need from roadway infrastructure and other vehicles?
- What should the public sector role be in providing infrastructure support?
- To what extent do higher levels of automation require fundamental breakthroughs in some technological fields?
- What roles should national and regional/state governments play in determining whether a specific AV is "safe enough" for public use?
- How safe is "safe enough"?

# **Big Unresolved Questions (2/2)**

- How can an AV be reliably determined to meet any specific target safety level?
- Should AVs be required to inhibit abuse and misuse by drivers?
- Are new public-private business models needed for higher levels of automation?
- How will AVs change public transport services, and will societal goals for mobility be enhanced or degraded?
- What will be the net impacts of AVs on vehicle miles traveled, energy and environment?