

ISTTT22 FHWA Workshop

Getting There from Here: Traffic Modeling, Data Streams, and Prediction for Connected Vehicle Systems Planning and Operations

Alexander Skabardonis Chicago, IL ,July 23, 2017

Conventional Paradigm:

Collect the minimum data on a "<u>Typical Day</u>" at a <u>Single Location</u>

Progress: HR Data – Traffic Signals

Danville Intersection

Skabardonis, Varaiya, "Control Strategies for Corridor management," UC Report TO008, 2016

HR Data Application: Intersection Performance

V2V: reduction in tart up lost time & saturation headway

V2I: Each Vehicle a sensor

MultiModal Intelligent Traffic Signal System (MMITSS)

L Head, Presentation, TRB Signal Systems Committee, Tucson, AZ, 2016

CAVs & Traffic Signals: Dynamic Lane Grouping

% Left Turns

CAVs: ECO -Driving

Messages "Here I am" Signal Phase & Timing (SPaT)

Speed Advisory source: UC PATH & BMW)

Field Test

14% Reduction in Fuel Use

Challenges

Data

Penetration Rate (will change over time) Communication Protocols Operational Characteristics Regulations

 Agencies Operational Analyses ("Highway Capacity Manual Procedures")

Use of "adjustment factors"

Example: Critical Intersection control strategy improves intersection capacity by 7%

Source of factors

Field data (not yet available) Simulation (assumptions)

Impact of Penetration Rates: NGSIM Data

CAVs Saturation Headway

CAVs Freeways

Background: AHS Implementation

- Dedicated AHS lanes
- Automated Check-in
- Automated Check-out
- Lateral and Longitudinal Controls
- Automated merging/diverging
- Malfunction Management & Analysis

AHS Demo: San Diego 1997

Models: Capacity of AHS Lane

Capacity = C = v. n / [ns + a(n - 1) + d] veh / lane / hour Assume v = 72 k/h, s = 5m. Then

Notes	١	С	d	а	n	ł
n=20 yields nearly 4 times today's capacity		2,100 3,840	30 60	- 2	1 5	
capacity proportiona		6,600 <mark>8,000</mark>	60 <mark>60</mark>	2 1	15 20	
to speed	· (

Model: CACC Lane Capacity

Cooperative Adaptive Crouse Control (CACC)

Challenges

Data

Curent TMC systems are not equipped to handle CAV data No standards/procedures for collecting, processing integrating CAV data into existing operations

- Models
- Simplified assumptions on car-following-lane changing
- Interactions with manually driven vehicles
- Calibration to real trajectories not CAVs
- Operational and communication protocols
- Agencies on Operational & Planning Analyses
 Use of "adjustment factors"

What will be the capacity of freeway lane? What link capacity to use in 2030 transportation plans? Pool Fund Study-Oregon DOT

Implementation Challenges Background: Initial Deployment Plans

