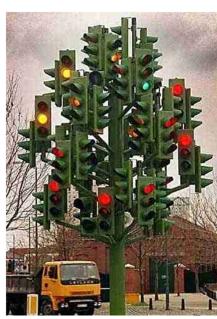


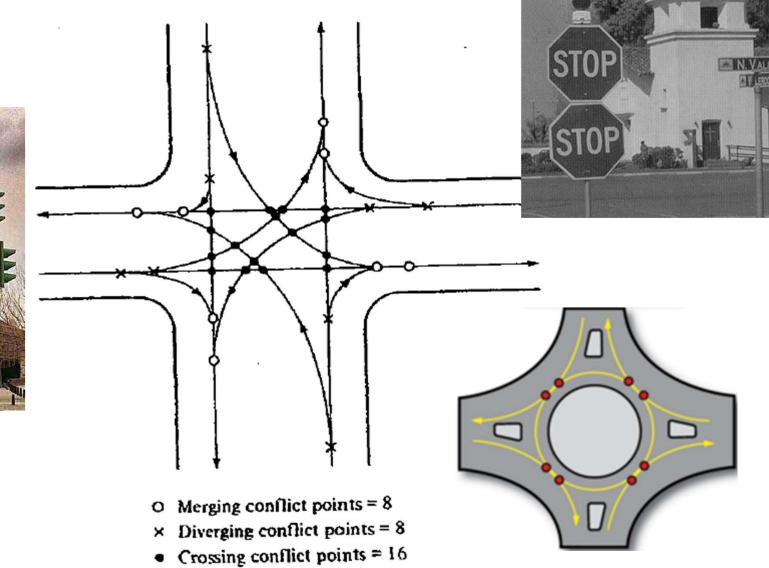
IPAM Workshop

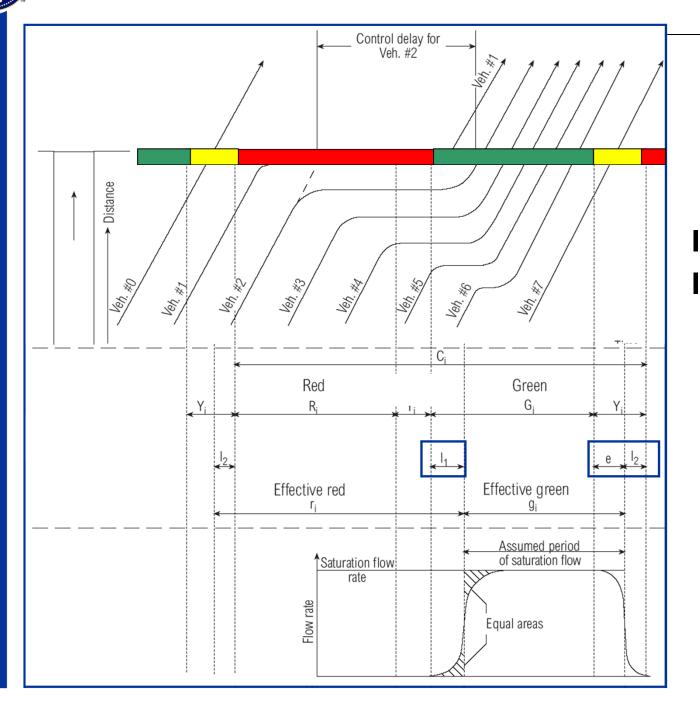
Mathematical Approaches To Traffic Flow Management

I. Traffic Signal Control

Alex Skabardonis UC Berkeley Los Angeles, CA September 9, 2015




- Background: Intersection control
- Traffic Flow at Signalized Intersections
- Performance Measures
- Signal Timing Isolated Traffic Signals
- Signal Coordination
- Actuated Traffic Signals
- Traffic Responsive and Adaptive Control


Background

Intersections: Conflict Points /Control Type

Traffic Flow at Signalized Intersections

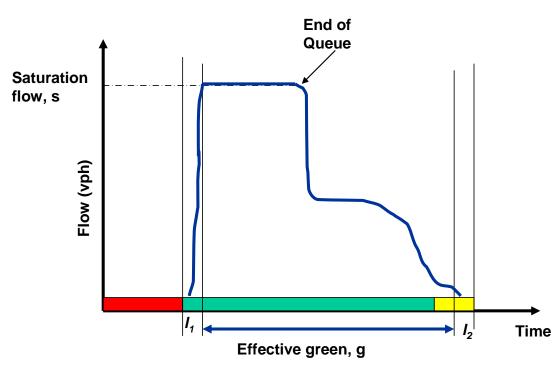
I_{1:} Start-up lost time

I_{2:} Clearance lost time

Lost Time & Effective Green Time (1)

- Start-up lost time (I₁): The time lost due to acceleration of the first four vehicles at the beginning of the green
- Clearance lost time (I₂): Portion of the yellow (and all-red) clearance interval that is not used by vehicles to cross the intersection stopline
- Total Lost Time, t_L

start-up lost time + clearance lost time

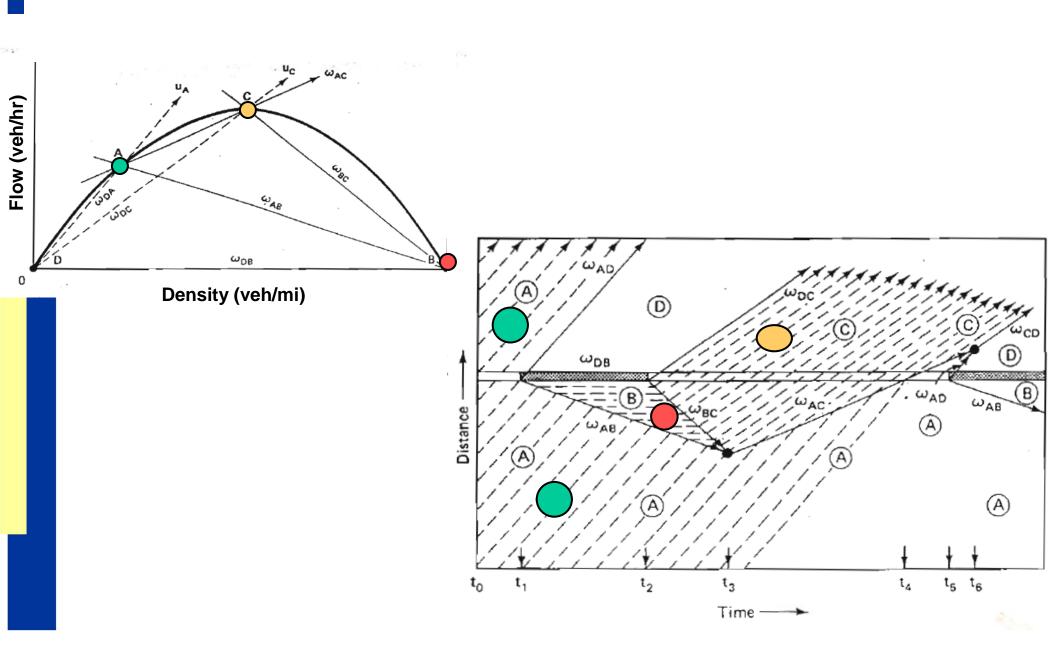

$$t_L = I_1 + I_2$$

• Effective Green/Red Times for a Movement actual green plus yellow time - lost time $g_i = G_i$ actual red time plus lost time $r_i = R_i$

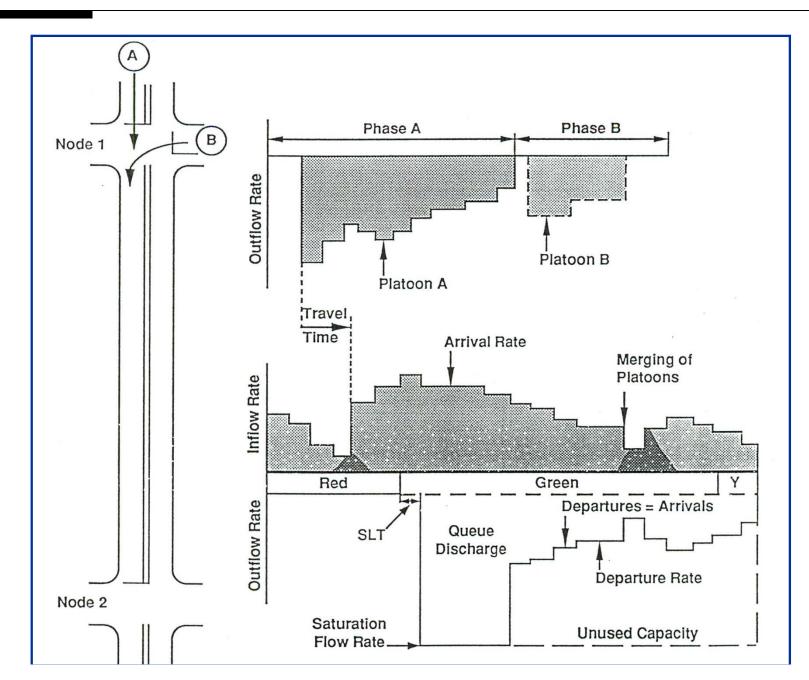
$$g_i = G_i + Y_i - t_L$$
$$r_i = R_i + t_L$$

Saturation Flow and Capacity

Saturation flow: the maximum flow rate per lane at which vehicles can pass through a signalized intersection assuming that the signal was green for a full hour and a queue is present



Ideal Saturation flow: 1,900 pce/l/hr/g


Capacity = (Saturation flow) * (proportion of time the signal is effectively green)

c = s (g/C) (vphl)

Urban Streets: Vehicle Platoons

Performance Measures – Traffic Signals (1)

I. MOBILITY

Operating Environment	Operating Conditions	Performance Measure
Intersection	Undersaturated	Average control delay
		Max back of queue
		Cycle failure
		Green time utilization
	Oversaturated	Throughput
Arterial/	Undersaturated	Average travel time
Grid Network		Average travel speed
		Travel time variability
		# of stops/stop rate
		Total delay
		% vehicles in the green
		Bandwidth efficiency
		Attainability
		Transit delay ¹
		Acceleration noise
	Oversaturated	Throughput
		Extend of queue
		Congestion duration

Performance Measures – Traffic Signals (2)

II, SAFETY			
Intersection/	Undersaturated/	# accidents per type	
		Encroachment time (ET)	
Arterial/	Oversaturated	# RLR	
Grid Network		# vehicles in yellow	
III. ENVIRONMENTAL			
Intersection/	Undersaturated/	Fuel Consumption	
Arterial/ Grid Network	Oversaturated	HC/CO/NOx/CO2/PM Noise	

Volume/Capacity Ratio (v/c)

The volume to capacity ratio (v/c) for an intersection lane group is also called degree of saturation, X:

$$X_{i} = \left(\frac{v}{c}\right)_{i} = \frac{v_{i}}{s_{i}\left(\frac{g_{i}}{C}\right)} = \frac{v_{i}C}{s_{i}g_{i}}$$
(16-7)

where

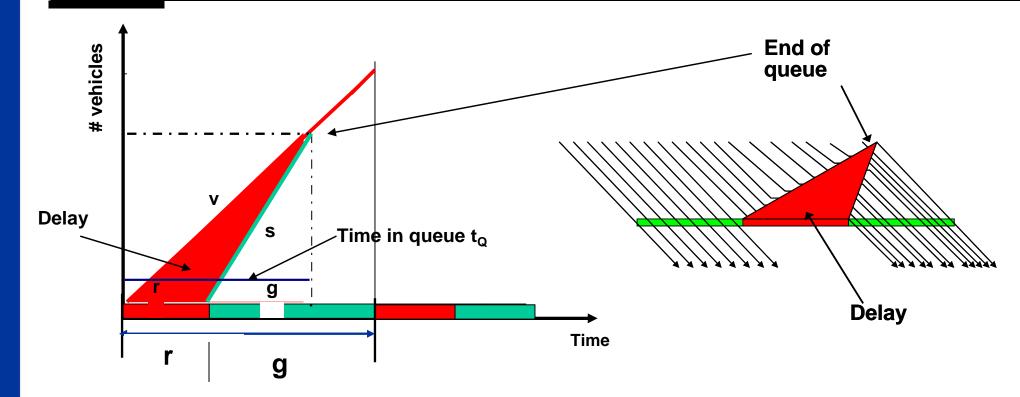
 $X_i = (v/c)_i = ratio$ for lane group i,

- v_i = actual or projected demand flow rate for lane group i (veh/h),
- s_i = saturation flow rate for lane group i (veh/h),
- g_i = effective green time for lane group i (s), and
- C = cycle length (s).

Intersection Critical v/c Ratio, X_c

The critical v/c ratio, X_c, is the v/c ratio for the whole intersection, considering only the lane groups that have the highest flow ratio (v/s) per signal phase:

$$X_c = \sum \left(\frac{v}{s}\right)_{ci} \left(\frac{C}{C-L}\right)$$


where

 $\Sigma\left(\frac{v}{s}\right)_{ci}$

- = critical v/c ratio for intersection;
 - = summation of flow ratios for all critical lane groups i;
- C = cycle length (s); and
- = total lost time per cycle, computed as lost time, t_L, for critical path of movements (s).

Intersection Spare Capacity = 1-X_c

Delay and Queuing

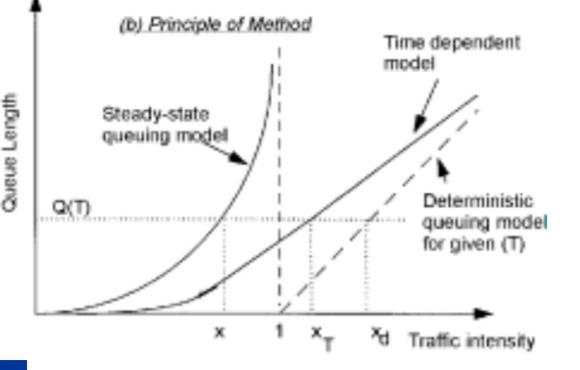
Time in the queue (sec)
$$t_Q = \frac{sr}{(s-v)}$$

Queue in the beginning of green (veh)

 $Q_M = \frac{Vr}{3600}$

$$d = \frac{c(1-g/c)^2}{2[1-(g/c)x]} + \frac{x^2}{2q(1-x)} - 0.65(\frac{c}{q^2})^{\frac{1}{3}}x^{2+5(g/c)}$$

where,


- d = average delay per vehicle (sec),
- c = cycle length (sec),
- g = effective green time (sec),
- x = degree of saturation (flow to capacity ratio)
- q = arrival rate (veh/sec).

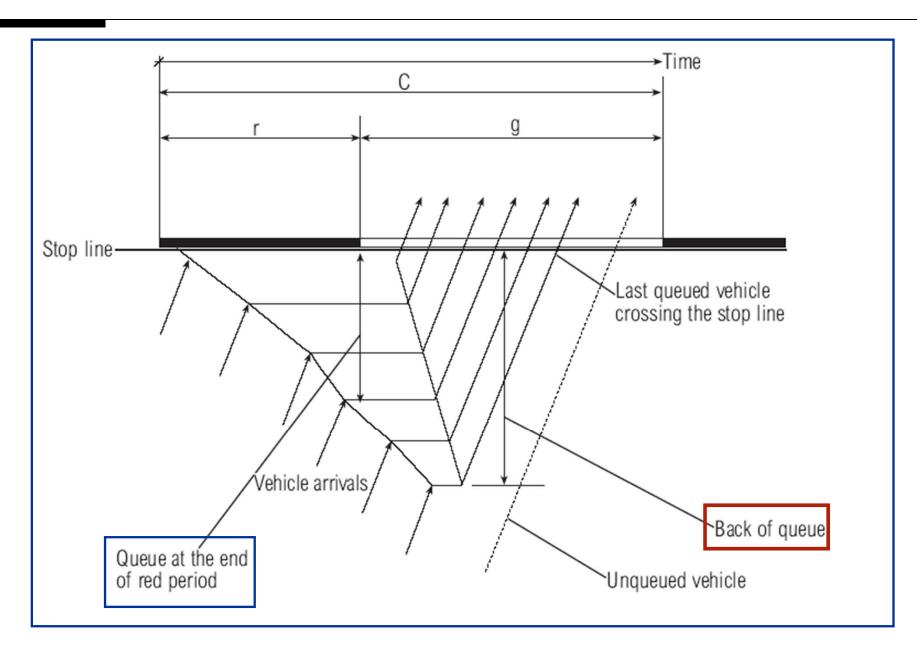
Delay – Time Dependent Models

Applies to random + saturation delay

Example HCM2000

$$d_2 = 900T \left| (X-1) + \sqrt{(X-1)^2 + \frac{8kIX}{cT}} \right|$$

- T = analysis period
- X = degree of saturation
- c = capacity
- K, I: adjustment factors


K: for coordination

I: for controller type

For Isolated fixed time signals

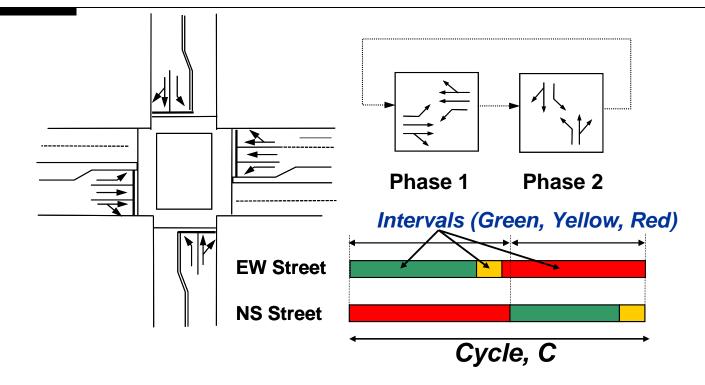
K = 0.5, I = 1

Back of Queue: Undersaturated Signal

Traffic Signal Operations

Isolated Signals

- Pretimed (Fixed Time): duration of cycle length and green times\ remain fixed throughout the analysis period
- Actuated: green times (and cycle length) vary based on the vehicle arrivals subject to a min and max value


Semi-actuated Fully-actuated

Adaptive: advanced control based on detection and prediction of traffic arrivals

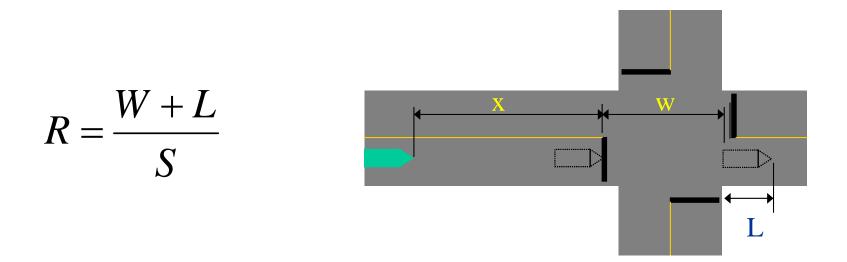
Arterials and Networks

- Coordinated fixed-time
- Coordinated actuated (semi-actuated)
- Traffic responsive & adaptive Control

Signal Timing: Definitions

- Cycle length: a complete sequence of signal indications
- Phase: portion of time that movements having the right-of-way do not change
- Interval: portion of time that signal indication remains unchanged

Yellow Time (Yellow Change)
 Warn drivers of end of phase


$$Y = T + \frac{S}{2a + 64.4G}$$

- Y = yellow change interval (sec)
- T = driver reaction time (sec) 1 sec.
- S = vehicle speed (ft/s) 85% speed or posted speed limit
- a = vehicle deceleration rate (f/s²) 10 ft/s²
- G = approach grade (%)

Clearance Intervals (2)

All Red (Red Clearance)

Use to clear vehicles in the intersection prior to changing right-ofway assignment

R = all-red clearance interval (sec)

S = vehicle speed (fps)

W = distance from stop line to intersection far side (ft)

L = vehicle length (ft)--- 20 ft for passenger cars

Minimum Pedestrian Green Time

- The minimum ped green time for a phase is determined based on typical values of pedestrian walking speed (4 ft/sec or 3.5/ft/sec)
- **Example HCM method**

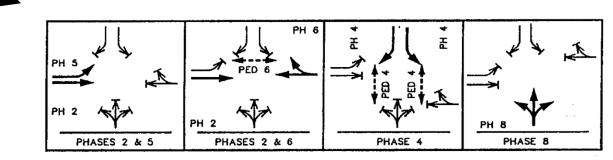
$$\begin{split} G_p &= 3.2 + \frac{L}{S_p} + \left(2.7 \, \frac{N_{ped}}{W_E}\right) & \text{for } W_E > 10 \, \text{ft} \\ G_p &= 3.2 + \frac{L}{S_p} + \left(0.27 \, N_{ped}\right) & \text{for } W_E \leq 10 \, \text{ft} \end{split}$$

where

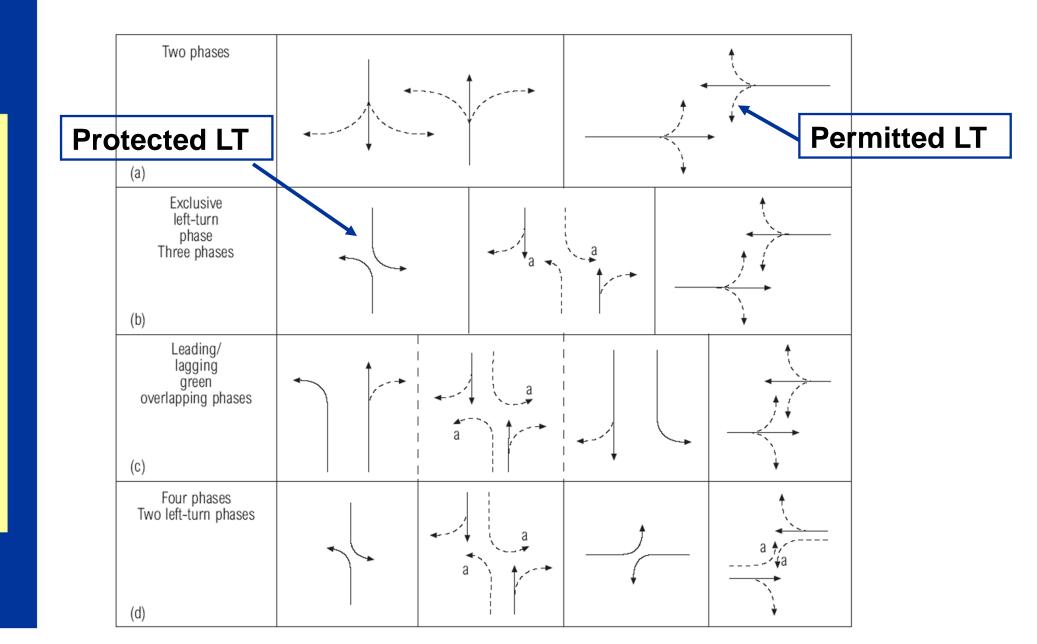
minimum green time (s), G_p

crosswalk length (ft),

$$S_p$$
 = average speed of pedestrians (ft/s),


- ŴF = effective crosswalk width (ft),
- 3.2 = pedestrian start-up time (s), and
- number of pedestrians crossing during an interval (p). N_{ped} =

Permitted phasing: turning movement is made through the opposing vehicle flow.


Example: Left turns concurrent with the opposing through movement, and right-turns concurrent with pedestrian crossings in a conflicting crosswalk.

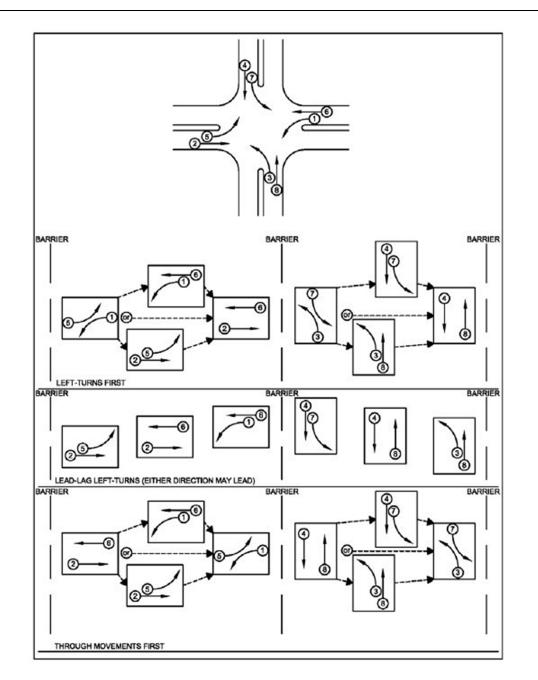
- Protected phasing: turns are made during an exclusive left-turn phase
- Protected-Permissive Left Turns
- Prohibited Left Turns
- Split Phasing

Typical Phasing Schemes

Criteria for Left Turn Phasing (1)

Intersection Design Characteristics

of left-turn lanes# of opposing through lanesSpeed of opposing trafficSight distance


Traffic Volumes

Left-turn volume (veh/cycle) V_{lt} Opposing through + right-turn volume V_o

- Delay to Left-Turning Vehicles
- Accident History

Example: V_{It} * V_o > 50,000 Protected LT

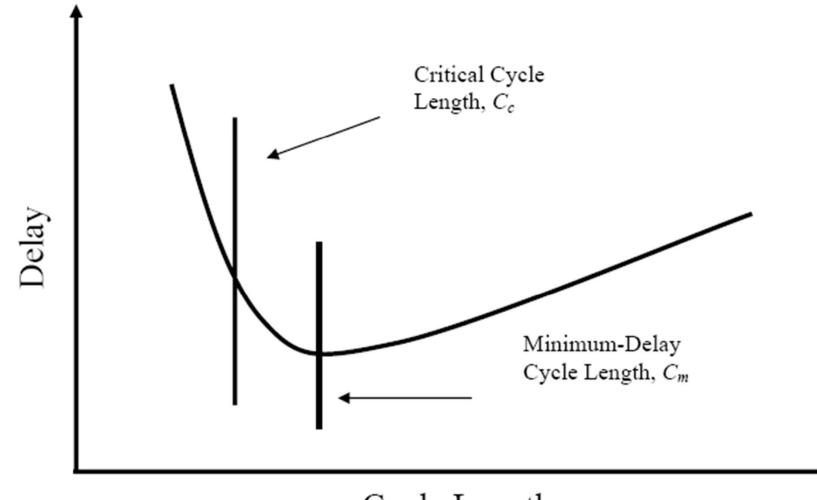
Pretimed Controllers: Signal Timing

• Cycle length:

Minimum green time to serve critical traffic demand/phase:

$$g = (v/s)(C-L) = y(C-L)$$

Minimum Cycle Time: C = L/(1-Y)


s.t. sum of min phase lengths

Optimum cycle length (Webster):

$$C_{o} = \frac{1.5L + 5}{1 - \sum_{i} (v_{j} / s_{j})_{i}^{c}}$$

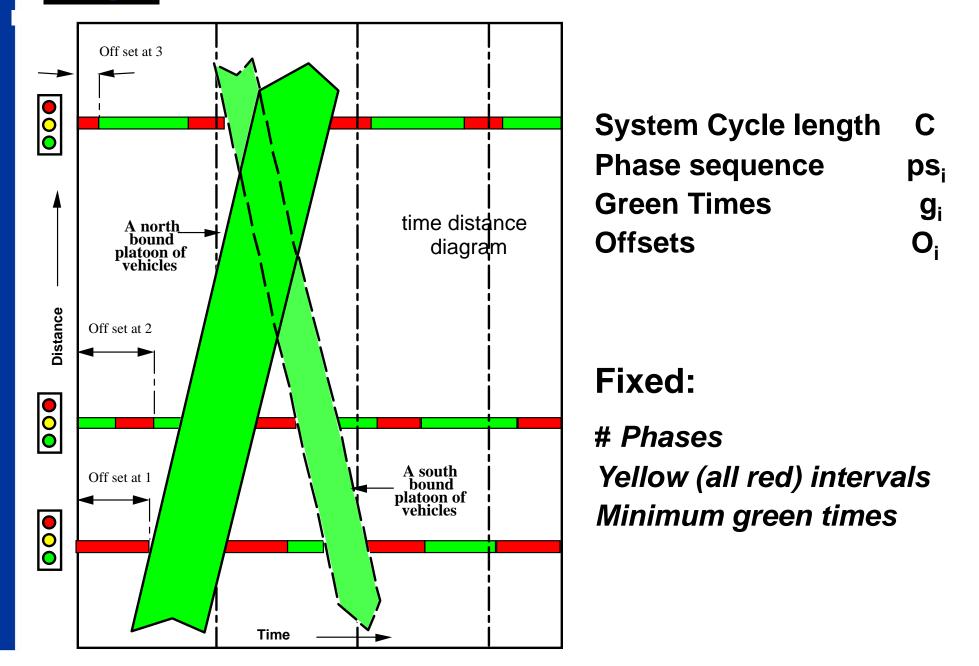
- C_o = Optimum delay cycle length (sec)
- L = Total lost time per cycle (sec)
- $y = (v/s)_i^c =$ Critical (flow/saturation flow) ratio for phase i

Signal Delay vs. Cycle Length

Cycle Length

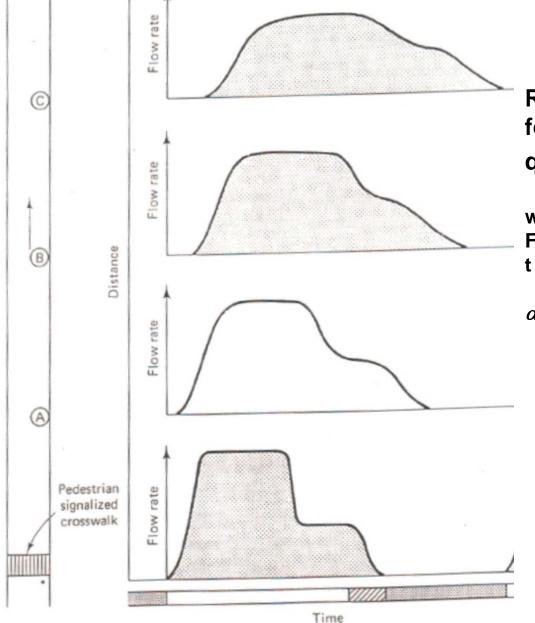
Signal Timing: Green Splits

Phase Green Times


Effective green time per phase g_i Equal Degree Of Saturation (EQUISAT)

$$g_{i} = \frac{(v / s)_{i}^{c}}{\sum_{i} (v / s)_{i}^{c}} (C - L) \qquad g = y(C - L) / Y$$

s.t. min phase lengths for peds/veh

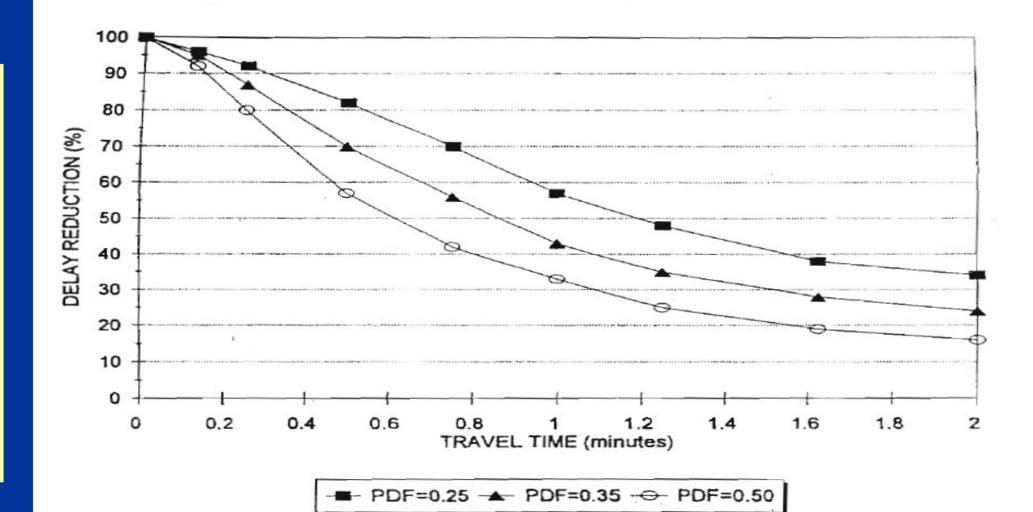

$$g_i = G_i + Y - t_L$$

 $G_i = actual green time for phase i (sec)$
 $Y_i = clearance = yellow + all-red time (sec)$
 $t_L = total lost time for phase (sec)$
 $C = cycle length (sec)$
 $L = lost time per cycle (sec)$

Coordinated Signals (Arterials/Networks): Signal Control Parameters

Platoon Dispersion

Robertson's platoon dispersion formula:


 $q_2(i+t) = F q_1(i) + (1-F) q_2(i+1+t)$

where: F= 1/(1+ α t) t = 0.8TT, α = 0.50

 α platoon dispersion factor (PDF)

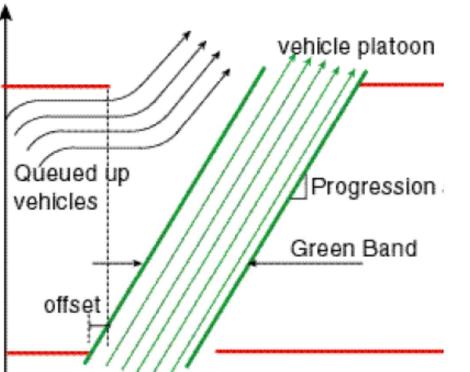
Benefits of Signal Coordination

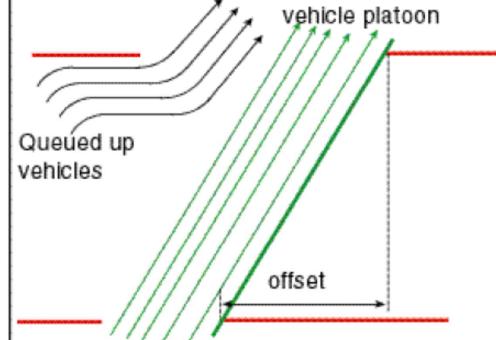
Concepts: Cycle length

- All signals operate on a <u>common</u> cycle length
- Typically the critical intersection dictates the system cycle length
- Signals may operate on multiples of cycle length (halfcycle)

- Time difference between two reference points
- Defined by phase and interval
- Value: 0 ~ cycle length (seconds)

The sum of offsets in two directions must be equal to an integer number of cycles

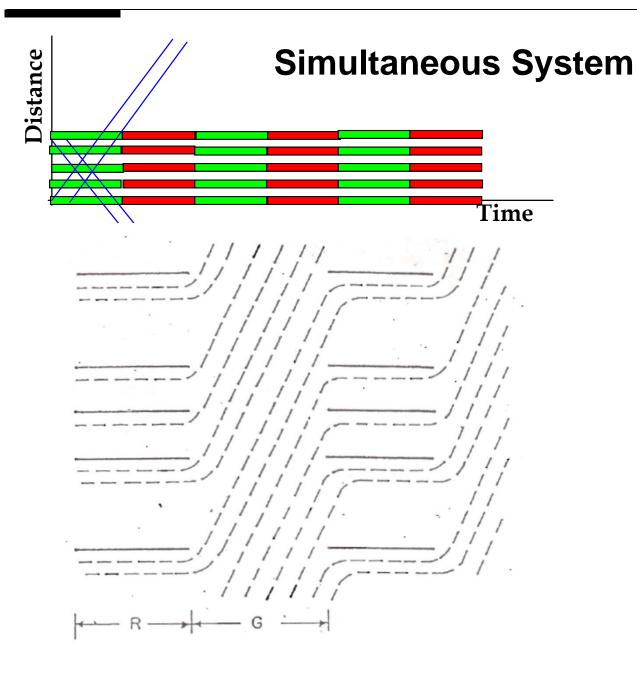

 $Off_{ij} + Off_{ji} = n C$


Ideal Offsets:

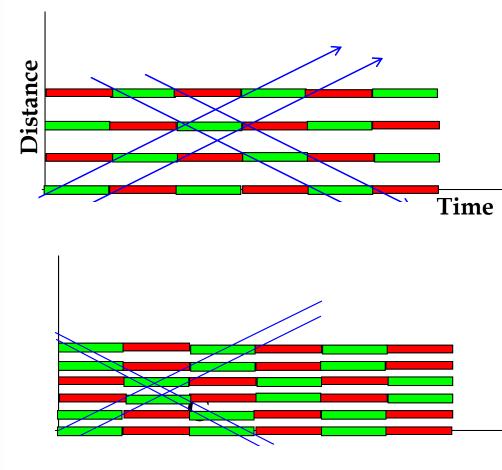
Offset = L/v

- L: Signal spacing (ft)
- V: Speed (ft/sec)

Concepts: Progression



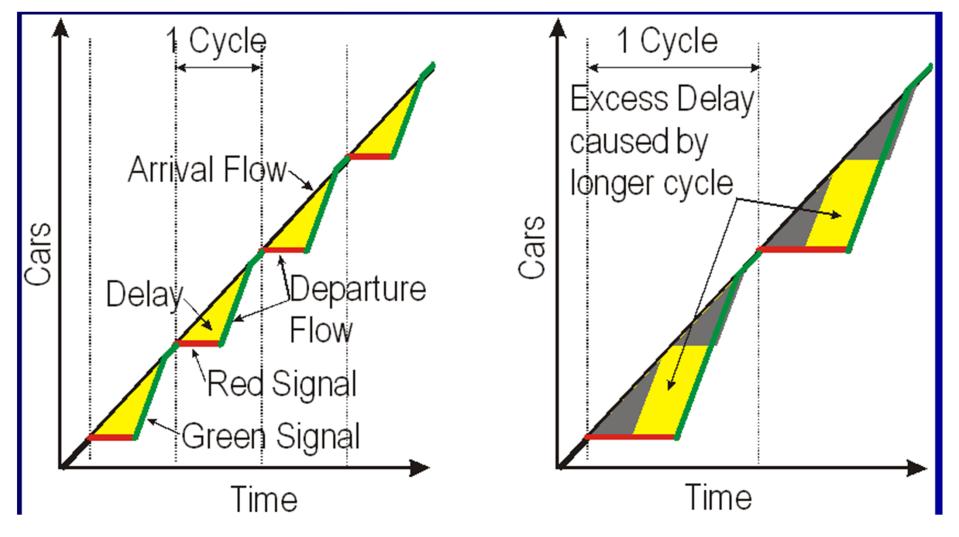
Offset measured at the start of green


Offset measured at the end of green

Common Synchronization Schemes (1)

Common Synchronization Schemes (2)

- Traffic demands per travel direction are balanced
- The signal spacing is approximately equal

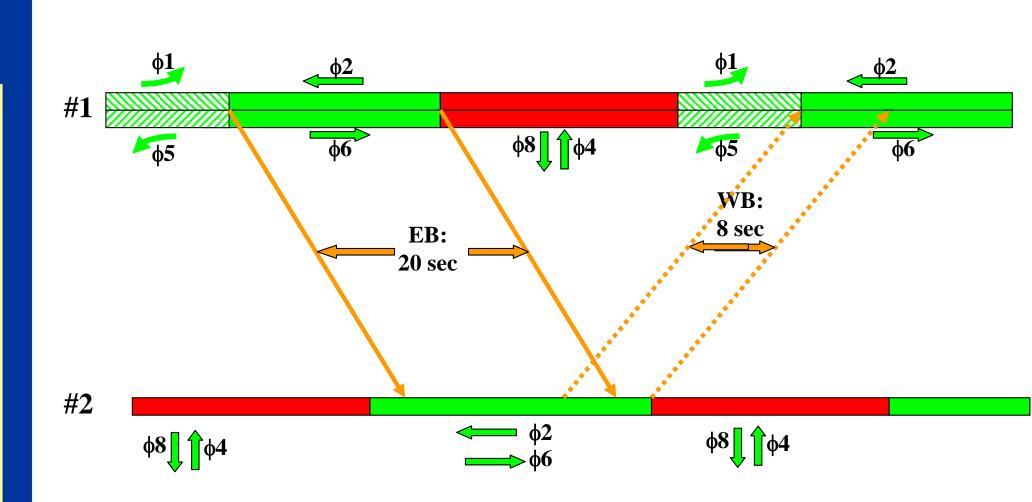

Alternate System C = 2L/v Bandwidth = green time

Double Alternate System C = 4L/v Bandwidth = (green time)/2

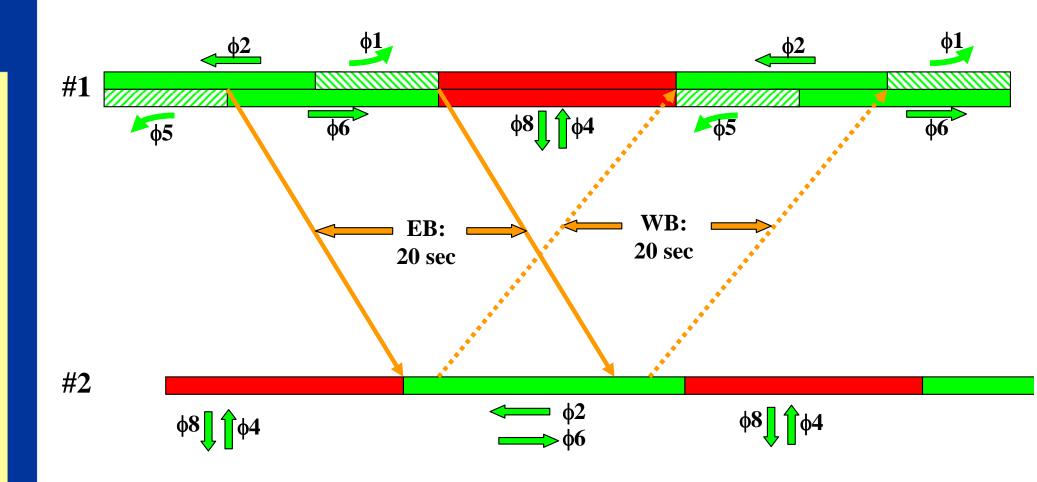
- C = system cycle length (sec)
- L = signal spacing (ft)
- V = average link speed (ft/sec)

Select Cycle length for Critical intersection




Incorporate Queue Clearance time

Reduce wasted Green time


Reduce upstream blocking & consider Lag Left phasing sequence

Phase Sequence & Arterial Progression (1) Leading Lefts

Phase Sequence & Arterial Progression (2) Lead-Lag

Optimization Objective Functions

Maximum Bandwidth

 Efficiency: Proportion of the cycle length used by the bandwidth

Efficiency (%) = (Bandwidth /2*Cycle Length)

 Attainability: Proportion of the through green utilized by the bandwidth (%)

Attainability (%)= (Bandwidth/Min. Artery Through Green)

Minimum Delay and Stops

Signal Timing Optimization Models

Model	Objective Function	Control Parameters		
TRANSYT-7F	Min Delay & Stops	C, g, O		
PASSER (MAXBAND)	Max Bandwidth	C, ps, O		
TSD4	Max Bandwidth	ps, O		
SYNCHRO	Min Delay	C, ps, g,O		

Optimization Objective Function:

Maximize $B = W_1 b_0 + W_2 b_i$

b_o= outbound green band

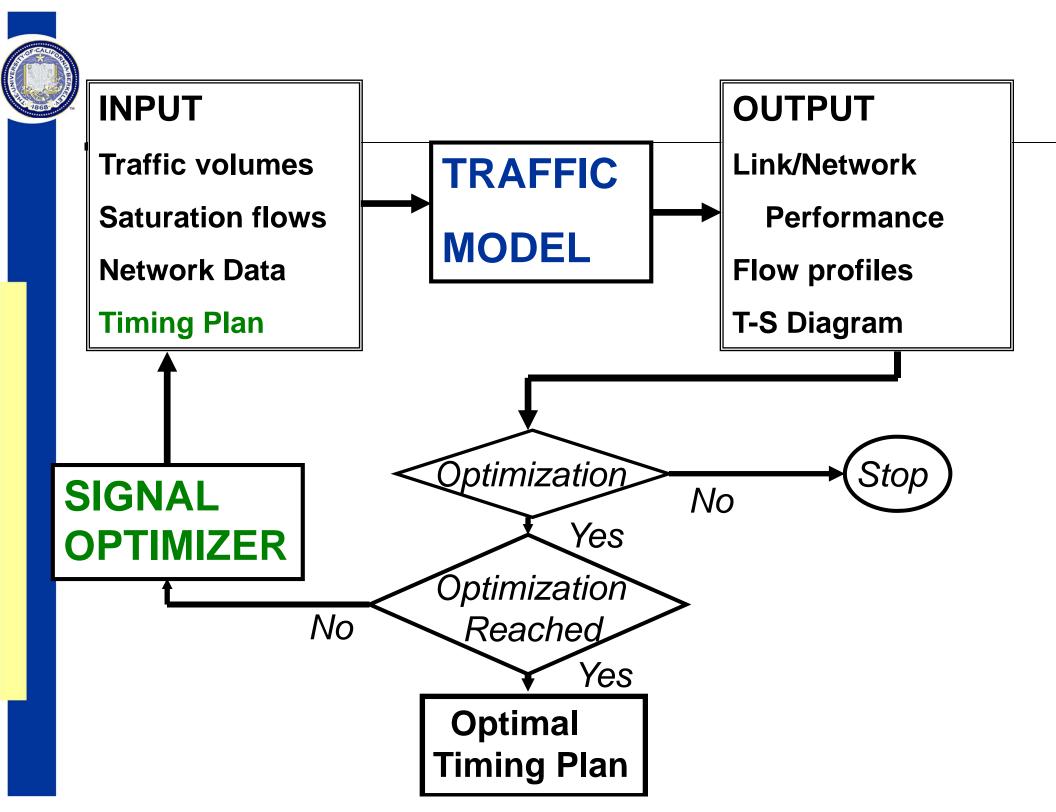
b_i= inbound green band

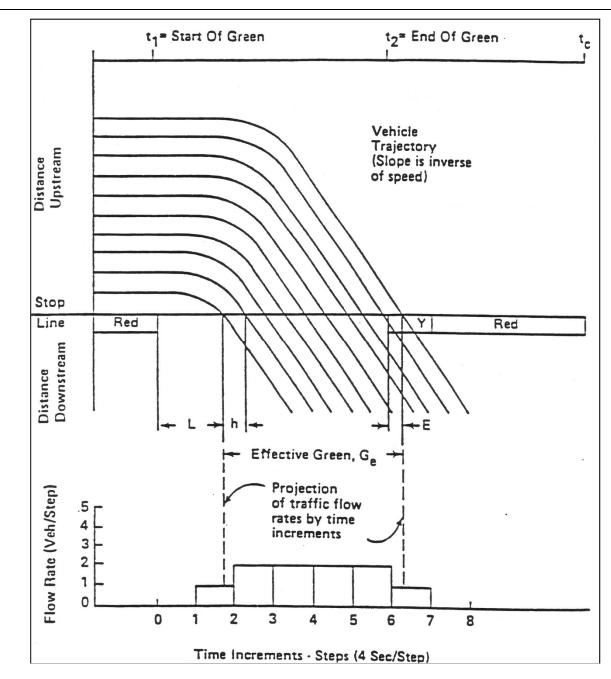
W = weighting factors

subject to:

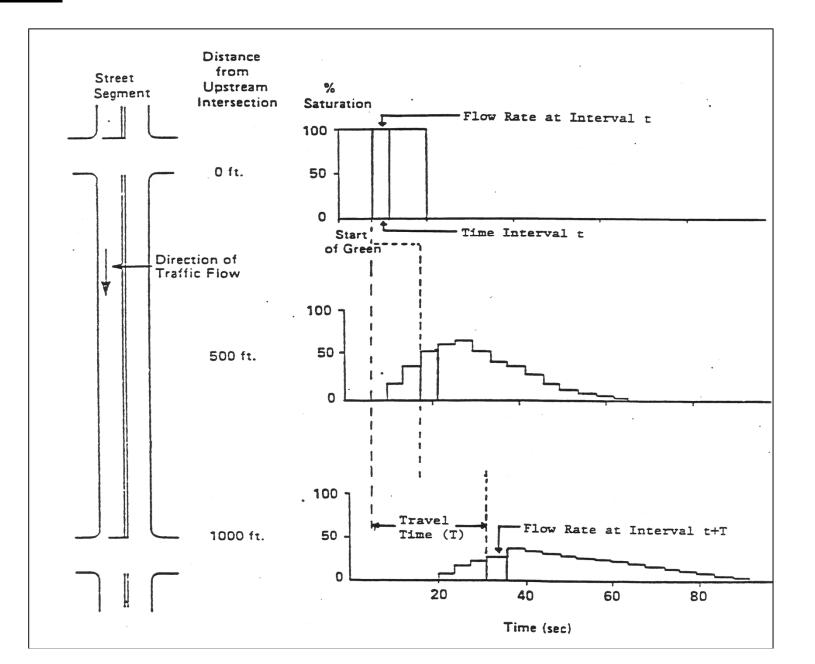
Minimum green times

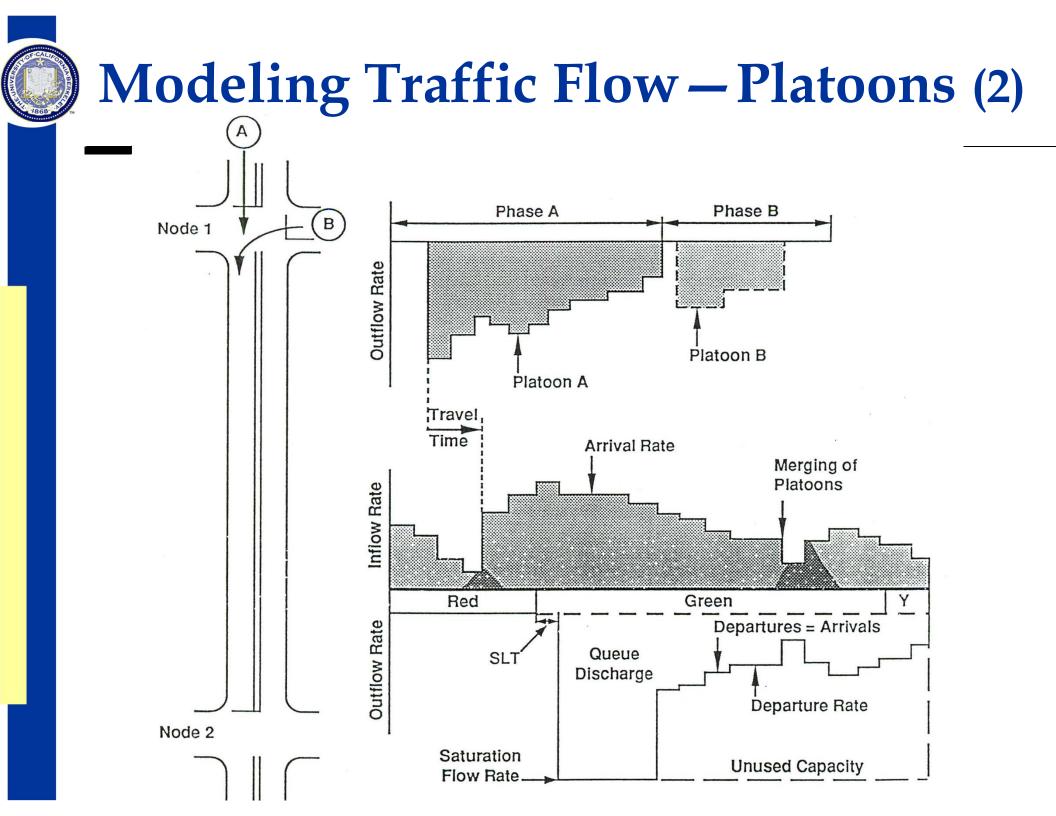
Assumptions


No Platoon Dispersion Turning Traffic Green Times calculated (Webster formula)


TRANSYT-7F Model

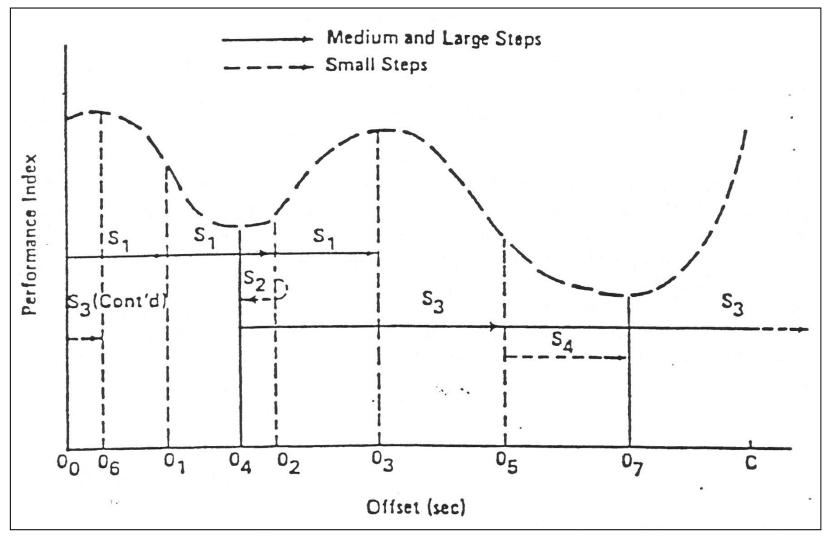
TRAffic Network Study Tool


- Macroscopic Deterministic Simulation
- Optimization of Cycle/Splits/Offsets
- Arterials/Grid Networks
- Multiple Vehicle Classes



Modeling Traffic Flow--Stopline

Modeling Traffic Flow – Platoons (1)


TRANSYT-7F: Signal Optimization

$PI = \sum_{i=1}^{N} W_{Di} D_i + KW_{si} S_i$

Di: delay on link i (veh-hr)
Si: number of stops on link i (veh/sec)
K: system-wide "stop penalty": the weight given to number of stops relative to delay.
W: weighting factors (default =1)

TRANSYT-7F Optimization Process

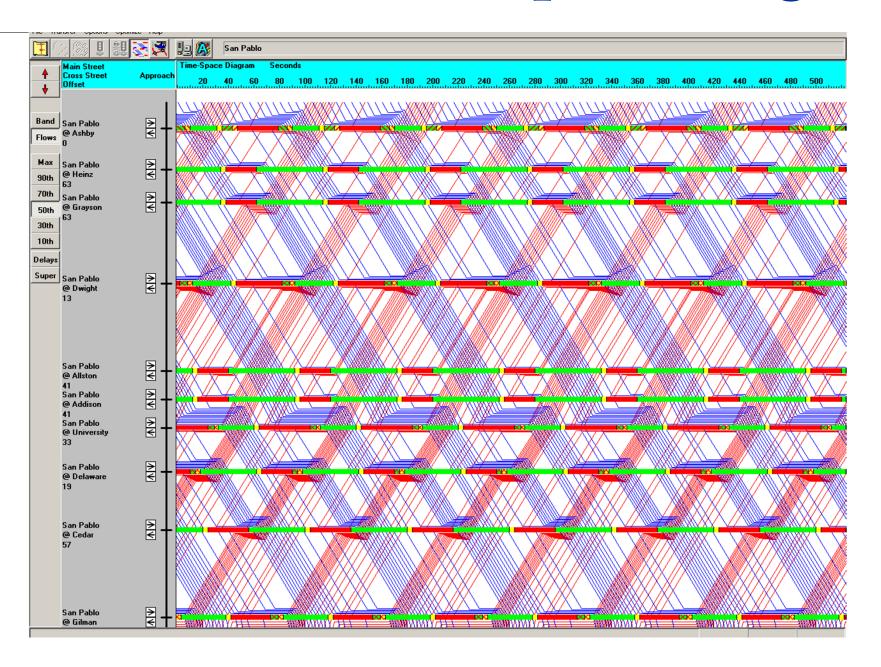
- Hill Climbing algorithm
- Global Optimum not guaranteed

Capacity Analysis

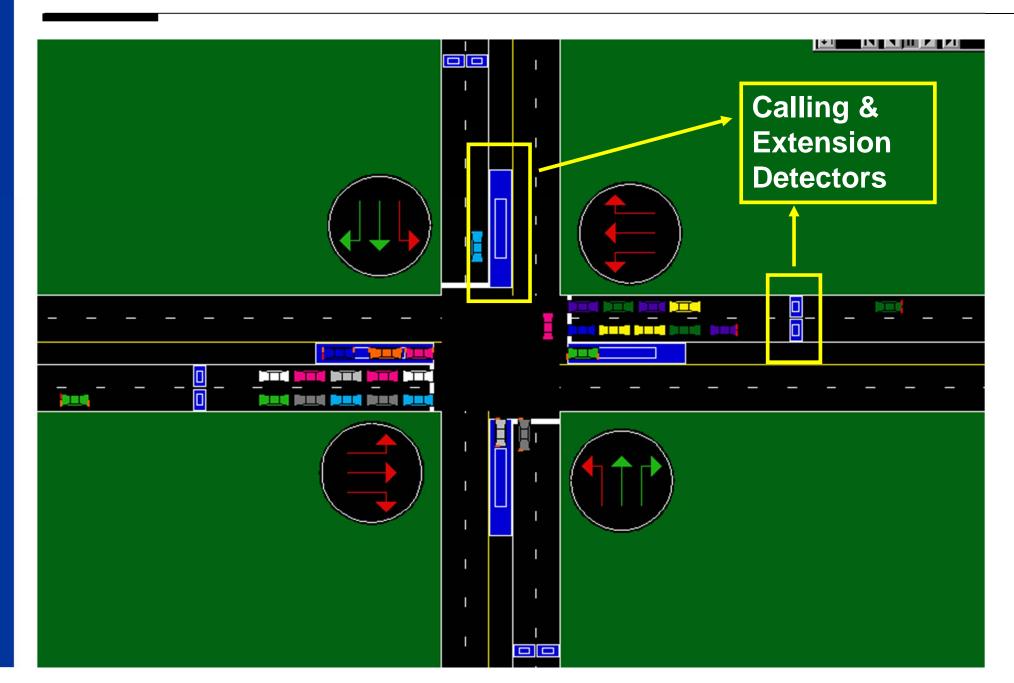
HCM 2000, ICU, Signal/Stops

Signal Timing

Actuated Signals Optimization – *Minimum Delay* Coordination


www.trafficware.com

SYNCHRO Signal Timing Window

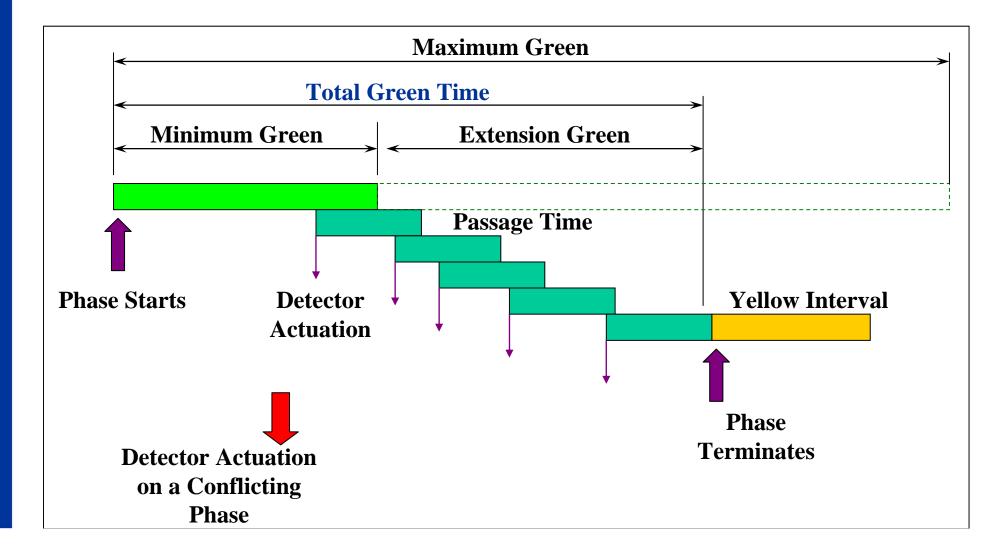

Synchro 4: E:\WORK\PROJECTS\proj01\eastpleasanton64\Synchro Files\amaltd.sy6													
T 🕼 🕼 💽 🛒 🖳 🚱 Stoneridge & Santa Rita													
Options	TIMING WINDOW	▶ EBL	→ EBT	EBR	√ ₩BL	← WBT	◆ ₩BR		∱ NBT	▶ NBR	SBL	↓ SBT	SBR _
Controller Type: Actuated-Coordir 💌	Lanes and Sharing (#RL)	ሻ	† ††	1	ሻሻ	†††	1	ሻሻ	† ††	1	ኘኘ	*†† ,	
	Traffic Volume (vph)	28	294	378	506	731	. 761	594	1249	. 86			37
Cycle Length: 100.0	Turn Type	Prot		Free	Prot		Pm+0v			Pm+0v			
Actuated C.L.: 100.0	Protected Phases	7	4		3	8	1	5	2	3	1	6	
Natural C.L.: 150.0	Permitted Phases			Free			8			2			
Int. v/c Ratio: 1.16	Detector Phases	7	4	None	3	8	1	5	2	3	1	6	
Int. Delay: 68.4 Int. LOS: E	Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lock Timings	Minimum Split (s)	9.0	21.0		9.0	21.0	9.0	9.0	21.0	9.0	9.0	21.0	
Offset Settings	Total Split (s)	9.0	21.0		19.0	31.0	25.0	20.0	35.0	19.0	25.0	40.0	
Offset: 86.0 Reference Style: Begin of Greer	Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
	All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	Lead/Lag	Lag	Lead		Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lead	
	Allow Lead/Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Reference Phase:	Recall Mode	None	None		None	None	None	None	Coord	None	None	Coord	
2+6 - NBT SB 🔻			145	100.0			50.9	17.0	32.7	E4.E	101212-11-12-2		
	Actuated Effct. Green (s)	4.4	14.0	100.0	18.8	28.9	30.5		J	51.5	22.0	37.7	
2+6 - NBT SB ▼ Master Intersctn.	Actuated g/C Ratio	4.4 0.04	0.15		18.8 0.19		0.51	0.17	0.33	0.52		37.7 0.38	
							0.51			100100	0.22		
	Actuated g/C Ratio	0.04 0.46 46.6	0.15	1.00	0.19	0.29	0.51	0.17	0.33	0.52	0.22 0.64	0.38	
	Actuated g/C Ratio Volume to Capacity Ratio	0.04	0.15 0.51	1.00 0.31	0.19 1.00	0.29 0.64	0.51 1.14 16.6	0.17 1.30	0.33 0.96	0.52 0.13	0.22 0.64 35.4	0.38 1.14	
,	Actuated g/C Ratio Volume to Capacity Ratio Delay 1	0.04 0.46 46.6	0.15 0.51 39.5	1.00 0.31 0.0 1.00	0.19 1.00 40.6	0.29 0.64 31.0 1.03 32.8	0.51 1.14 16.6 1.05 98.1	0.17 1.30 41.5 0.51 162.7	0.33 0.96 33.0	0.52 0.13 2.0	0.22 0.64 35.4 1.00	0.38 1.14 31.0 0.98	
,	Actuated g/C Ratio Volume to Capacity Ratio Delay 1 Progression Factor Webster Signal Delay (s) Level of Service	0.04 0.46 46.6 0.97	0.15 0.51 39.5 0.92 37.0 D	1.00 0.31 0.0 1.00	0.19 1.00 40.6 1.02 80.3 F	0.29 0.64 31.0 1.03 32.8 C	0.51 1.14 16.6 1.05 98.1 F	0.17 1.30 41.5 0.51 162.7 F	0.33 0.96 33.0 0.33	0.52 0.13 2.0 0.95	0.22 0.64 35.4 1.00 37.5 D	0.38 1.14 31.0 0.98 101.0 F	
	Actuated g/C Ratio Volume to Capacity Ratio Delay 1 Progression Factor Webster Signal Delay (s) Level of Service Queue Length 50th (ft)	0.04 0.46 46.6 0.97 49.9 D	0.15 0.51 39.5 0.92 37.0 D 71	1.00 0.31 0.0 1.00 0.6 A 0	0.19 1.00 40.6 1.02 80.3 F ~209	0.29 0.64 31.0 1.03 32.8 C	0.51 1.14 16.6 1.05 98.1 F ~428	0.17 1.30 41.5 0.51 162.7 F ~280	0.33 0.96 33.0 0.33 19.3 B 240	0.52 0.13 2.0 0.95 1.9	0.22 0.64 35.4 1.00 37.5 D	0.38 1.14 31.0 0.98 101.0 F ~503	
	Actuated g/C Ratio Volume to Capacity Ratio Delay 1 Progression Factor Webster Signal Delay (s) Level of Service	0.04 0.46 46.6 0.97 49.9 D	0.15 0.51 39.5 0.92 37.0 D	1.00 0.31 0.0 1.00 0.6 A 0	0.19 1.00 40.6 1.02 80.3 F	0.29 0.64 31.0 1.03 32.8 C	0.51 1.14 16.6 1.05 98.1 F ~428	0.17 1.30 41.5 0.51 162.7 F	0.33 0.96 33.0 0.33 19.3 B 240	0.52 0.13 2.0 0.95 1.9 A	0.22 0.64 35.4 1.00 37.5 D 125	0.38 1.14 31.0 0.98 101.0 F ~503	
	Actuated g/C Ratio Volume to Capacity Ratio Delay 1 Progression Factor Webster Signal Delay (s) Level of Service Queue Length 50th (ft)	0.04 0.46 46.6 0.97 49.9 D	0.15 0.51 39.5 0.92 37.0 D 71 98	1.00 0.31 0.0 1.00 0.6 A 0	0.19 1.00 40.6 1.02 80.3 F ~209	0.29 0.64 31.0 1.03 32.8 C 172	0.51 1.14 16.6 1.05 98.1 F ~428	0.17 1.30 41.5 0.51 162.7 F ~280	0.33 0.96 33.0 0.33 19.3 B 240	0.52 0.13 2.0 0.95 1.9 A 10	0.22 0.64 35.4 1.00 37.5 D 125	0.38 1.14 31.0 0.98 101.0 F ~503 #627	
	Actuated g/C Ratio Volume to Capacity Ratio Delay 1 Progression Factor Webster Signal Delay (s) Level of Service Queue Length 50th (ft) Queue Length 95th (ft)	0.04 0.46 46.6 0.97 49.9 D 19 50	0.15 0.51 39.5 0.92 37.0 D 71 98	1.00 0.31 0.0 1.00 0.6 A 0	0.19 1.00 40.6 1.02 80.3 F ~209	0.29 0.64 31.0 1.03 32.8 C 172	0.51 1.14 16.6 1.05 98.1 F ~428	0.17 1.30 41.5 0.51 162.7 F ~280 m#304	0.33 0.96 33.0 0.33 19.3 B 240	0.52 0.13 2.0 0.95 1.9 A 10	0.22 0.64 35.4 1.00 37.5 D 125 177	0.38 1.14 31.0 0.98 101.0 F ~503 #627	
	Actuated g/C Ratio Volume to Capacity Ratio Delay 1 Progression Factor Webster Signal Delay (s) Level of Service Queue Length 50th (ft) Queue Length 95th (ft) ↓ ↓ ↓	0.04 0.46 46.6 0.97 49.9 D 19 50	0.15 0.51 39.5 0.92 37.0 D 71 98	1.00 0.31 0.0 1.00 0.6 A 0	0.19 1.00 40.6 1.02 80.3 F ~209 #325	0.29 0.64 31.0 1.03 32.8 C 172	0.51 1.14 16.6 1.05 98.1 F ~428	0.17 1.30 41.5 0.51 162.7 F ~280 m#304	0.33 0.96 33.0 0.33 19.3 B 240	0.52 0.13 2.0 0.95 1.9 A 10	0.22 0.64 35.4 1.00 37.5 D 125 177	0.38 1.14 31.0 0.98 101.0 F ~503 #627	
	Actuated g/C Ratio Volume to Capacity Ratio Delay 1 Progression Factor Webster Signal Delay (s) Level of Service Queue Length 50th (ft) Queue Length 95th (ft)	0.04 0.46 46.6 0.97 49.9 D 19 50	0.15 0.51 39.5 0.92 37.0 D 71 98	1.00 0.31 0.0 1.00 0.6 A 0	0.19 1.00 40.6 1.02 80.3 F ~209 #325	0.29 0.64 31.0 1.03 32.8 C 172	0.51 1.14 16.6 1.05 98.1 F ~428 #874	0.17 1.30 41.5 0.51 162.7 F ~280 m#304 → ₀4	0.33 0.96 33.0 0.33 19.3 B 240	0.52 0.13 2.0 0.95 1.9 A 10	0.22 0.64 35.4 1.00 37.5 D 125 177	0.38 1.14 31.0 0.98 101.0 F ~503 #627	▶ • • • • •

SYNCHRO: Time-Space Diagram

Traffic Actuated Signal Control

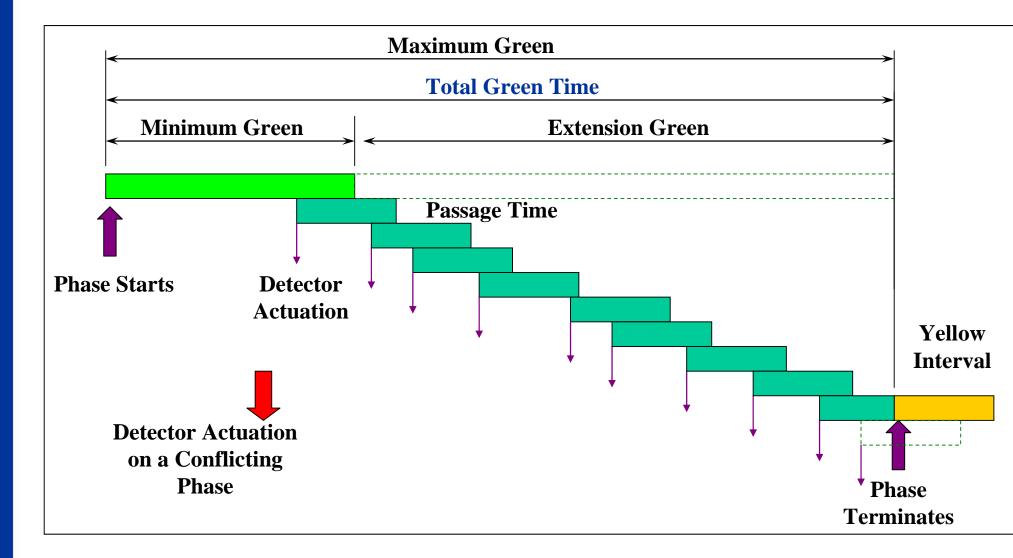
Actuated Signals – Basic Signal Settings

Minimum Green


- Time to serve vehicles in the queue (stopline to detector location)
 - 10 s main street through movements
- Vehicle Extension (Gap/Passage Time)
 - Advanced Loop Detectors: Vehicle extension (s) = DS/(1.47-V) DS = detection setback (ft) V = speed (mph)
 - Stopbar Detection: Vehicle extension close to zero

Maximum Green

Max green time allowed for the green phase Maximum green time = 1.5 x Green time (X = 0.95)


Operation of an Actuated Phase (1)

Case 1: Max Green Not Reached (Gap out)

Operation of an Actuated Phase (2)

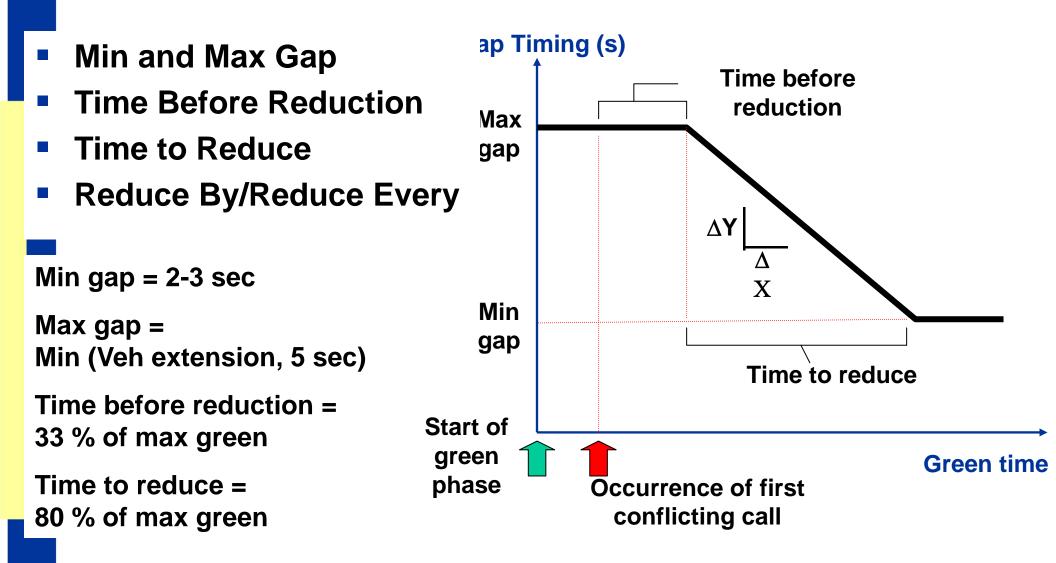
Case 2: Max Green Reached (Max out)

NEMA/170/2070 (Volume/Density) Controllers

Variable Initial

Function of vehicle arrivals during yellow & all-red

Vehicle Extension (Gap) Reduction
 Start with high gap time and reduce once traffic is moving


Max I/Max II:

Different Settings of Max Green Time-of-day or Coordinated/Free operation

Other Controller Functions

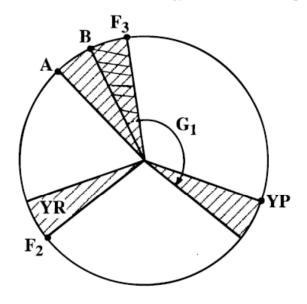
Phase skip Recall: min, max, ped Dual/single entry Conditional service

Volume/Density Settings: Vehicle Extension

Coordination of Actuated Signals

Cycle Length (sec): All signals operate on a common fixed cycle. Typically the cycle length for the critical intersection. Usually determined for X = 0.95

Split (sec): The phase green + yellow + all red intervals

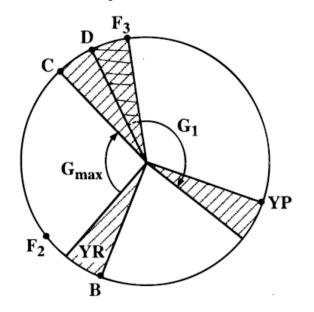

Offset or Yield Point (sec): the difference between a reference point (system zero) and the end (beginning) of the through (sync) phase green interval at the intersection.

Force Off (sec): fixed point in the signal cycle where actuated phases terminate.

Permissive Period (sec): amount of time (in seconds) within the cycle, during which non-coordinated, phases are allowed to be serviced

Coordinated Actuated Signals: Operation (1)

a. Phase 2 Is "Forced-Off," Phase 3 "Gaps-Out"

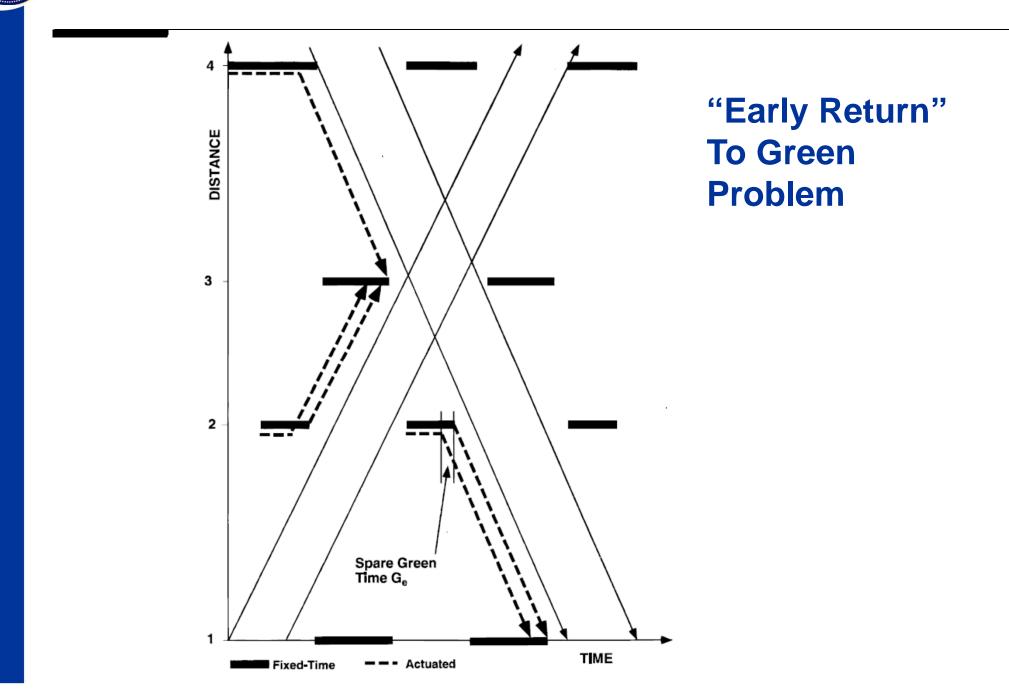


 F_2 = Phase 2 Ends At The Force-Off Point

A = Phase 3 Ends Before Force-Off, F_3 . Position Of Point A Depends On Vehicle Headways And Extension Interval (Gap).

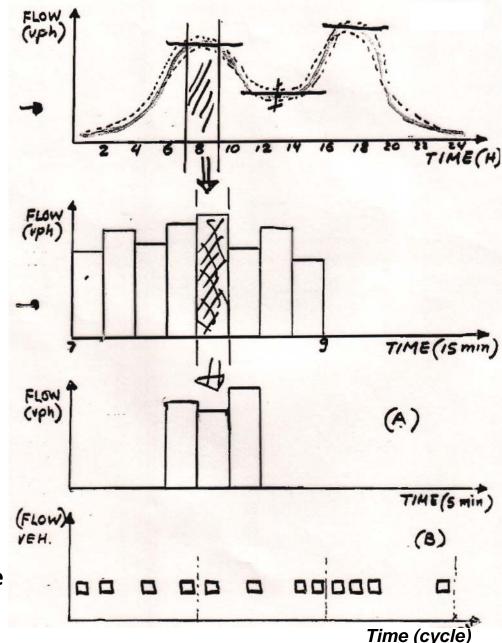
 BF_3 = Spare Green Time Available To The Sync Phase.

b. Phase 2 "Gaps-Out," Phase 3 "Maxes-Out"



B = Phase 2 Ends Before Force-off, F_2

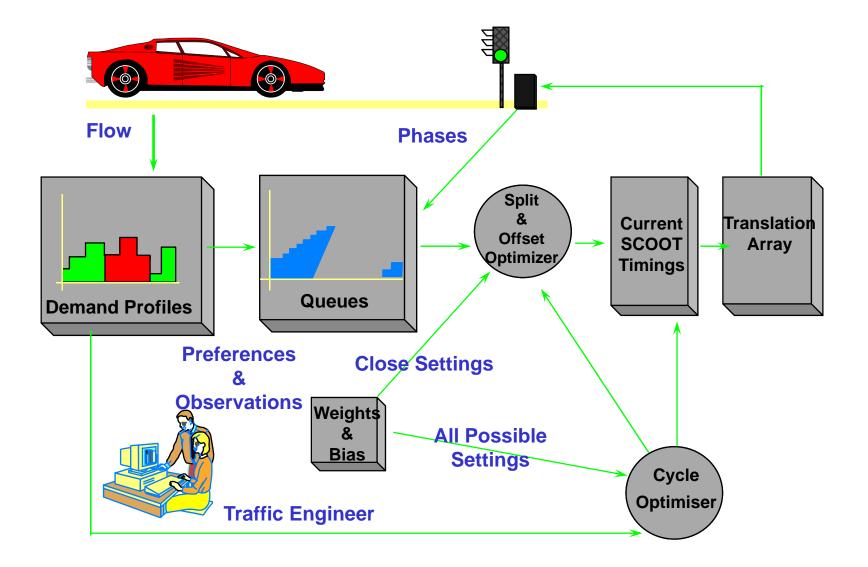
C = Phase 3 ends, sync phase starts. Position of point C depends on the max green G_{max} for Phase 3.


DF₃ = Spare Green Time Available To The Sync Phase

Coordinated Actuated Signals: Operation (2)

Traffic Flow Variability vs. Control

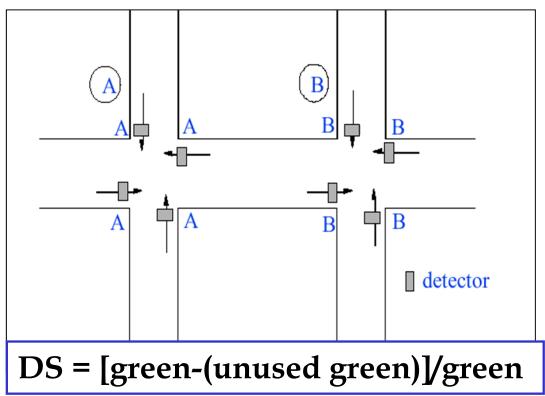
- Fixed-Time Plans
- Time of Day (TOD)
- A No Detection
 - May be actuated
 - Fixed time plans
- **B** Traffic responsive plan selection
 - System detection
 - Traffic responsive control
- **C** On-line timing development
 - Approach & system detection
 - Adaptive control
- **D** Measure & predict arrivals per cycle
 - Extensive detection



Overview: Traffic Control Strategies

CONTROL STRATEGY	TIMINGS DEVELOPED	TIMINGS IMPLEMENTED	TRAFFIC DATA	DETECTORS
1st Generation	Off-line	Time-of-Day (Traffic Responsive)	Historical	N/A System
1.5 Generation	Off-line	Operator	Estimated (Real-time)	System
2nd Generation (SCOOT, SCATS)	On-line	On-line	Predicted/ Real-Time	Approach
3rd Generation/Adaptive OPAC, RHODES	On-line	On-line	Predicted/ Real-Time	Approach

http://www.signalsystems.org.vt.edu/documents.html


SCATS

ydney Coordinated Adaptive Traffic System

Stopline Detection

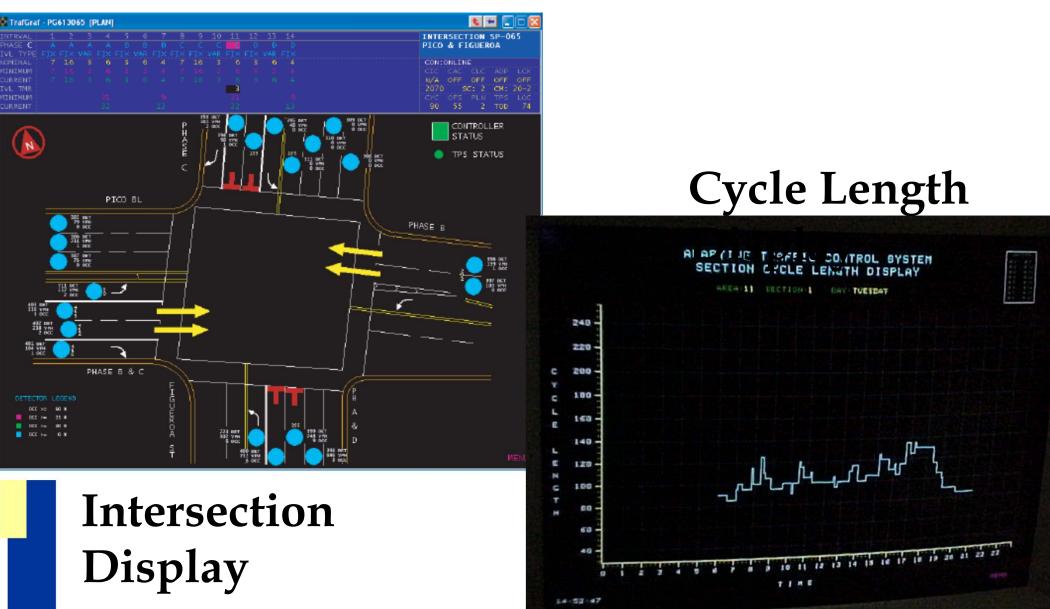
Network subdivided into Regions

Each region has homogenous flow characteristics Each region subdivided into links and nodes Calculate degree of saturation (DS) for all nodes

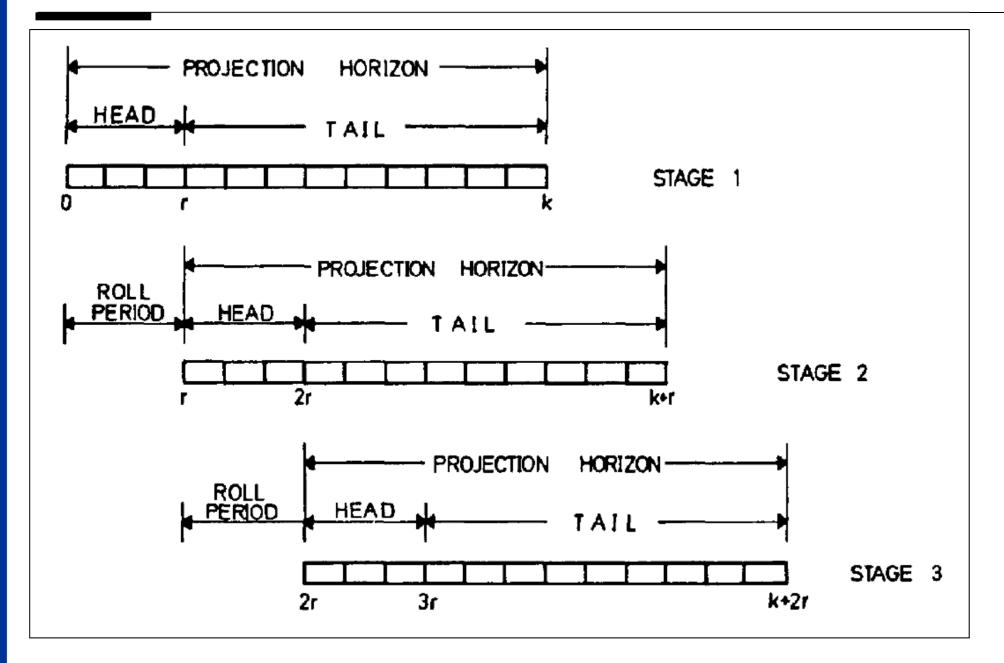
LADOT'S ATCS Adaptive Traffic Control System (1)

 Adjust signal timing on a cycle-by-cycle basis: Cycle Length Splits (Critical Intersection Control) Offset (Critical Link Control)

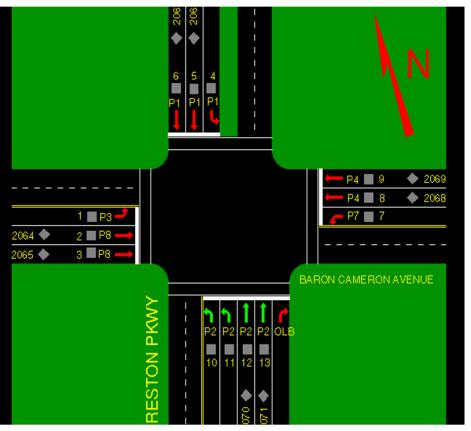
Data:


Detectors located 200-300 ft upstream of the stopline Volume & occupancy data collected every second Data smoothed and used every cycle

Constraints:


Phase sequence is fixed Minimum green times

LADOT ATCS (2)



Adaptive Control: Rolling Horizon

- Measured and Predicted Vehicle Arrivals
- Optimization: Min Queues
- Rolling Horizon

- Upstream detectors can provide an actual history for a short portion of the profile
- Smoothed volume can be used for uniform profiles
- Platoon identification and smoothing can be used for cyclic profiles