

22nd Annual Conference

Arterial Performance Measures Based on High Resolution Data

Alex Skabardonis California PATH UC Berkeley

Palm Springs, CA September 21, 2016

Work with Pravin Varaiya, Zahra Amini, Robert Campbell

- Background
- Signalized Intersections:
 - Performance measurement
 - Timing plan development
- Arterial Performance
 - ATCS assessment on Pacific Coast Highway
 - Proposals for control improvements
- Looking Ahead

Background (1):

Traffic Flow Variability vs. Control

- Fixed-Time Plans
- Time of Day (TOD)
- A No Detection
 - May be actuated
 - Fixed time plans
- **B** Traffic responsive plan selection
 - System detection
 - Traffic responsive control
- **C** On-line timing development
 - Approach & system detection
 - Adaptive control
- **D** Measure & predict arrivals per cycle
 - Extensive detection

Backround (2): Traffic Control Systems

- Most signal systems fixed-time control
 - Limited data
 - Out-dated timing plans
- Adaptive systems
 - High cost
 - Complex to understand and operate

Source: Alek Stevanovic, NCHRP Synthesis 403

Approach: Use of HR data*

- Performance measures for operators and travelers
 - Use of existing infrastructure
 - No interference with controller operation
- Improving Signal Timing Plans
 - Performance derived signal settings
 - Robust timing plans
- On-Going/Future Work
 - Traffic volume prediction
 - Safety (red light running)
 - Multimodal (pedestrians, bicycles)

*Work with P. Varaiya & Sensys Networks "Management of Urban Traffic with H-R Data" IEEE ITSC 2014

Data Collection System

Selected Test Site: Beaufort, SC

Intersection Volume: Daily Variation

2/28/2015, 7AM to 8PM

Total volume (veh/cycle)

Peak Period, 4-7 PM

Total volume (veh/15 minutes)

Approach Volumes & Turning Movements

Peak Period, 4-7 PM

Approach Volume (veh/15 min)

Turning Mov -Leg 2 (veh/ 15 min)

Wasted green time: time phase is active with no vehicle present and conflicting phase call Vehicle arrivals: % arrivals on green

Performance: Average Delay (sec/veh) HCM Level of Service (LOS)

Performance: V/c and LOS

Improving Signal Timing Plans

- Volume clustering best set of volumes for the three timing plans available
- New timing plans reduce intersection signal delay by 10% on average

ATCS Assessment

- 5 mile Section of Pacific Coast Highway (PCH)
- Nine signalized intersections
- LADOT ATCS Control System

Data Collection Periods

- Preliminary ATCS Data Collection (ATCS-2012): 4 days
- Primary ATCS Data Collection (ATCS): 8 days
- TOD-230 Data Collection (TOD-230): 6 days
- TOD Optimized Data Collection (TOD-Optimized): 6 days
- Detector data
- Signal Timing data
- Bluetooth data
- Probe vehicles
- Video cameras

Comparison of Data Sources

PCH Travel Times --Probe Vehicles vs. Bluetooth

SB PCH Travel Times

NB PCH Travel Times

- Travel times based on Bluetooth data Median and inter-quartile range
- **H** Travel times based on probe vehicles Median and inter-quartile range
- Difference at this time is significant at 5% level

NB PCH Travel Times: ATCS vs. TOD Plan

- ATCS Travel time median and inter-quartile range
- TOD-230 Timing Plans Travel time median and inter-quartile range
- Difference at this time is significant at 5% level

SB PCH Travel Times: ATCS vs. TOD Plan

- ATCS Travel time median and inter-quartile range
- TOD-230 Timing Plans Travel time median and inter-quartile range
- Difference at this time is significant at 5% level

ATCS Operational Issues (1)

Inefficient Splits:

At the Bottleneck Location

•At intersections upstream of the Bottleneck

ATCS Operational Issues (2)

Wrong Offsets Downstream of the Bottleneck

(C)

Alex Skabardonis California PATH Institute of Transportation Studies UC Berkeley

skabardonis@ce.berkeley.edu 510-642-9166