A Brief Introduction of Berkeley Deep Drive (BDD)

Presented by Ching-Yao Chan PATH, UC Berkeley

on behalf of Prof. Trevor Darrell BDD Director EECS, UC Berkeley & PATH Co-Director

Deep Learning: A Buzzword

- Alpha Go
- Already broadly adopted at many hightech companies
- A flurry of investments
- A cluster of start-ups

Deep Learning

- A Type of Machine Learning
- Machine Learning (Artificial Intelligence) systems acquire their knowledge, by extracting patterns from raw data.
- Data representation in deep learning
 - Mapping representation to output
 - Deep Learning introduces representation that are expressed in other simpler representations in multiple layers
 - Thus a Multi-Layer Deep Structure.

Illustration of a Deep Learning Model

Output: object identity

3rd hidden layer: object parts

2nd hidden layer: corners and contours

1st hidden layer: edges

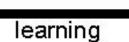
Visible layer: input pixels

Source:

http://www.deeplearningbook.org/contents/intro.html

Deep Learning History

- Deep Learning dated back to 1940s, known as Cybernetics in 1940s-1960s
- Connectionism in 1980s-1990s
- Current resurgence started in 2006
- In recent years, Deep Learning has advanced significantly due to several contributing factors
 - Greater computing power (CPU, GPU, Network)
 - Higher availability an affordability of GPUs
 - Large collection of data samples available to train and test algorithms (such as ImageNet, with 14,197,122 images, 21841 synsets indexed)

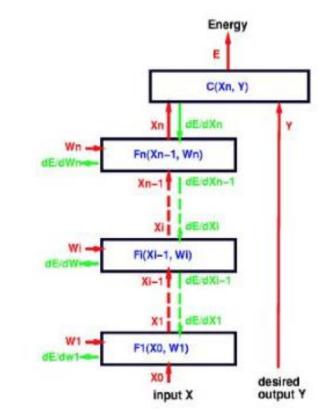

End-to-End Learning for Vision, Text, Speech What is Deep Learning?

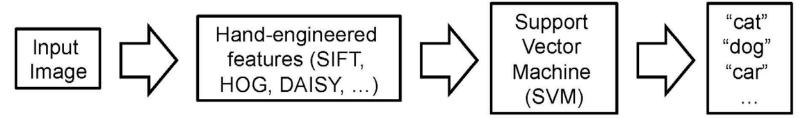
Compositional Models Learned End-to-End

Hierarchy of Representations

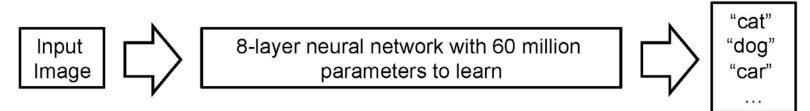
- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word

concrete




figure credit Yann LeCun, ICML '13 tutorial

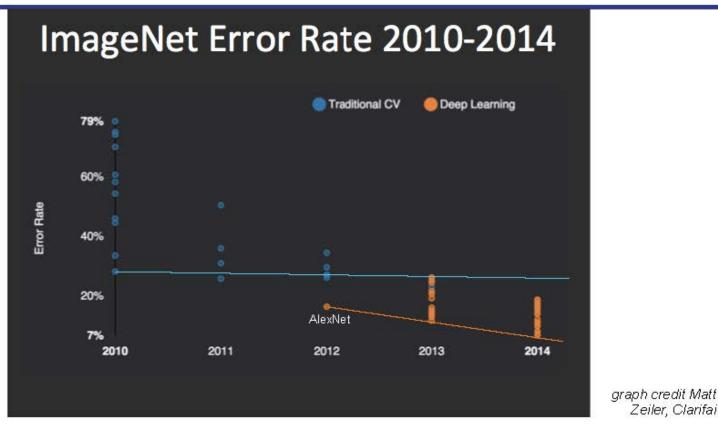
Source: Berkeley Vision and Learning Center http://caffe.berkeleyvision.org/


abstract

Object Detection in Computer Vision

State-of-the-art object detection until 2012:

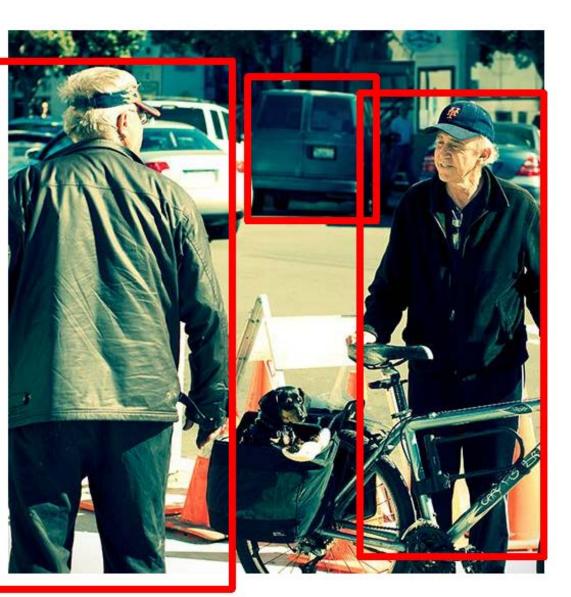
Deep Supervised Learning (Krizhevsky, Sutskever, Hinton 2012; also LeCun, Bengio, Ng, Darrell, ...):



~1.2 million training images from ImageNet [Deng, Dong, Socher, Li, Li, Fei-Fei, 2009]

Source: Pieter Abbeel presentation, 04/2016

Doing Better and Better


Performance

Source: Pieter Abbeel presentation, 04/2016

Zeiler, Clarifai

Large-scale Semantic Description

Object Detection

...

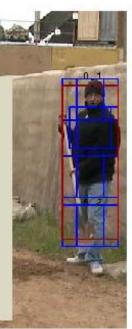
Source: Trevor Darrell presentation

Large-scale Semantic Description

"A man with glasses and a coat, facing back, walking away"

"An elderly man with a hat and glasses, facing the camera and talking"

"An entlebucher mountain dog sitting in a bag"

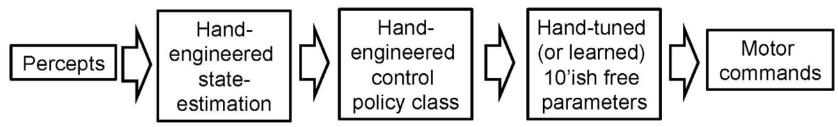

"A blue GMC van

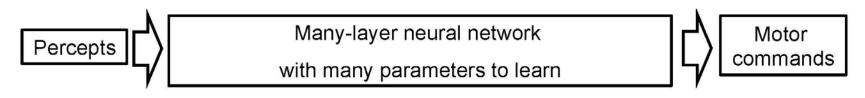
parked, in a back view"

Object Detection Semantic Segmentation Pose Estimation Attribute Classification Fine-Grained Recognition Action Recognition

> "a man wearing long sleeves, possibly holding a shovel." "person last seen at 0900 in view 5" "unusual farm worker"

Hypothetically,


- Recent Tesla Incident (May 2016, Florida)
 - Supposedly, the Tesla (camera + radar) sensor did not recognize the "side of truck" versus the background sky;
- Can a "deep learning" system recognize an object that is "not the same" as a typical target?


End-to-End Visuomotor

Robotics

Current state-of-the-art robotics

Deep reinforcement learning

Source: Pieter Abbeel presentation, 04/2016

State of the Art – Nvidia Example

Nvidia demo of Visuomotor Control (April 2016)

- End-to-End learning, implementation on Drive-PX2 platform
- trained a convolutional neural network (CNN) to map raw pixels from a single front-facing camera directly to steering commands
- With only human steering inputs as training signals; does not explicitly train the system to detect the outline of roads
- Avoided the needs to recognize human-designated features, such as lane markings, other cars, etc., nor did it include a number of "if-then" rules
- As of 03/2016, 72 hours of training data collected
- Use simulation to enhance training
- 98% of autonomy (see Nvidia paper) in field testing

Criticism and Challenges

- Formal and complete safety design verification
 - Training data
 - Stability
 - Credit assignment
- Compliance with functional safety (such as ISO-26262)
 - safety assurance
- Disruptive proposition of end-to-end solution
 - Departure from conventional automotive model

Deep Learning at Berkeley

- Berkeley Vision Learning Center
 - A consortium that started in 2012
 - Tremendous advances in computer and deep learning.
 - Open-source CAFFE, widely used globally
- Berkeley Deep Drive (BDD) Center
 - A consortium that started in Spring 2016
 - Seeking to merge deep learning with automotive perception and bring computer vision technology to the forefront.

Berkeley Deep Drive

A Research Alliance

to Investigate State-of-the-Art Technologies

in Computer Vision and Machine Learning

for Automotive Applications

Berkeley Deep Drive

- Current members include:
 - Audi/VW, Bosch, Ford, Honda, Hyundai, Nvidia, Panasonic, Qualcomm, Samsung, Toyota
 - GM, NXP, Sony recently joined
 - Nexar and Mapillary are contributing partners
 - Nexar provides 100,000 hours of driving videos yearly
 - Mapillary provides millions of images
- Several more are in agreement reviews

Berkeley Deep Drive

- Sponsors membership
 - Access to faculty and students
 - Shared use of research outcome, codes and data, in repository
 - Commercial use of BDD software repository, without further licensing agreement with UC Berkeley
- BDD project and scope of study
 - Proposals submitted by campus PIs
 - Sponsors review and rate proposals
 - Panel consolidates and decides on final selection of projects to sponsors

Berkeley Deep Drive Categories of Exemplar Projects, 1 of 2

- Deep Learning Methodologies
 - Clockwork FCNs for Fast Video Processing
 - Cross-modal Transfer Learning
 - Deep Learning for Tracking
 - Fast Object Detection and Segmentation
 - Improving the Scaling of Deep Learning Networks by Characterizing and Exploiting Soft Convexity
 - Learning Deep Models Securely on Sensitive Imaging Data with Cryptographic Gaurantees
 - Unsupervised Representation Learning for Autonomous Driving
- Deep Learning Implementation
 - Benchmarks and Leaderboard for Deep Reinforcement Learning
 - Design Space Exploration for Deep Neural Nets for Advanced
 Driver Assistance Systems
 - FPGA PRET Accelerators of Deep Learning Classifiers for Autonomous Vehicles
 - Learning to Drive Under Unstructured Conditions
 - Low Latency Deep Inference for Self-Driving Vehicles
 - Secure and Privacy-Preserving Deep Learning

Berkeley Deep Drive Categories of Exemplar Projects, 2 of 2

- Detection and Perception
 - Pedestrian Models in Urban Environment for Autonomous Driving and Database of Video Sequences for Model Training, Testing, and Implementation
 - Real-Time Perception/Prediction of Traffic Scene with Deep Learning for Autonomous Driving
 - Motion Prediction for Urban Autonomous Driving Based on Stochastic Policy Learned via Deep Neural Network
 - Inference of Drivers' Intent at Intersections
 - Outdoor Semantic Scene Segmentation via Multi-modal Sensor Fusion
- Driver-Vehicle Interaction
 - Verifiable Control for (Semi)Autonomous Cars that Learn from Human (Re)Actions
 - Implicit Communication Through a Car's Motion
 - Understanding Driver Awareness for Smart Vehicles
 - Human-Machine Arbitration in Hybrid Driving Systems

Future of AI/Deep Learning

- A progressive emergence
- A worldwide community
- Deep Learning for image and speech recognition widely deployed
 - Prospects for automated driving, medical imaging, robots, etc.
- Hardware for embedded applications needed
 - Nvidia, Qualcomm, etc.
- Probably a way to go for truly intelligent machine

Questions?

Check out BDD website bdd.Berkeley.edu

Thank You!

Ching-Yao Chan California PATH Program University of California, Berkeley

> cychan@berkeley.edu TEL: 510-665-3621

