Road Vehicle Automation History, Opportunities and Challenges

Steven E. Shladover, Sc.D.
California PATH Program
Institute of Transportation Studies
University of California, Berkeley

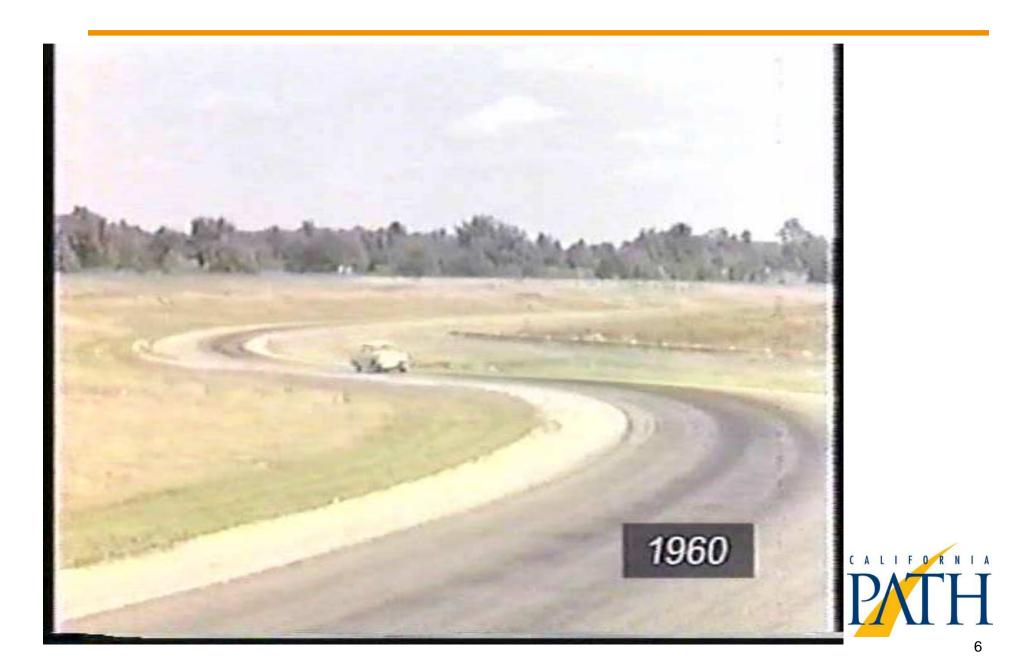
Tokyo, November 2016

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation (not autonomy) is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

History of Automated Driving (pre-Google)

- 1939 General Motors "Futurama" exhibit
- 1949 RCA technical explorations begin
- 1950s GM/RCA collaborative research
- 1950s GM "Firebird II" concept car
- 1964 GM "Futurama II" exhibit
- 1964-80 Research by Fenton at OSU
- 1960s –Wire following in Japan (Kikuchi, Matsumoto)
- 1970s Vision guidance in Japan (Tsugawa)
- 1986 California PATH and PROMETHEUS programs start
- 1980s Dickmanns vision guidance in Germany
- 1994 PROMETHEUS demo in Paris
- 1994-98 National AHS Consortium (Demo '97)
- 2003 PATH automated bus and truck demos
- (2004 2007 DARPA Challenges)


General Motors 1939 Futurama

GM Firebird II Publicity Video

GM Technology in 1960

General Motors 1964 Futurama II

Robert Fenton's OSU Research

Pioneering Automated Driving in Japan (courtesy of Prof. Tsugawa, formerly at MITI)

1960s – Wire following Kikuchi and Matsumoto

1970s – Vision Guidance (Tsugawa)

Pioneering Automated Driving in Germany (1988 - courtesy Prof. Ernst Dickmanns, UniBWM)

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

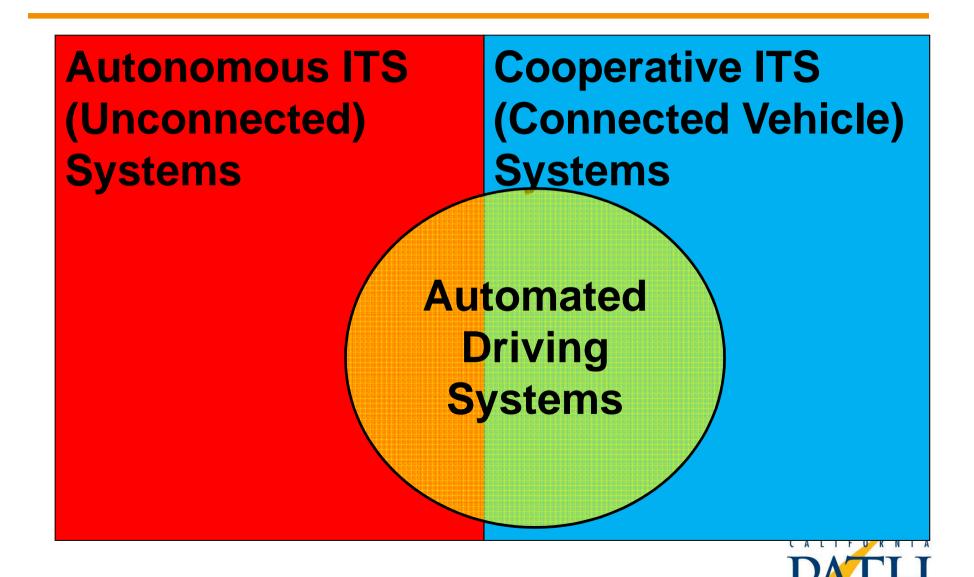
Terminology Problems

- Common misleading, vague to wrong terms:
 - "driverless" but generally they're not!
 - "self-driving"
 - "autonomous" 4 common usages, but different in meaning (and 3 are wrong!)
- Central issues to clarify:
 - Roles of driver and "the system"
 - Degree of connectedness and cooperation
 - Operational Design Domain (ODD)
- See SAE J3016 (2016): http://standards.sae.org/j3016_201609/

Definitions (per Oxford English Dictionary)

autonomy:

- 1. (of a state, institution, etc.) the right of self-government, of making its own laws and administering its own affairs


 2. (biological) (a) the condition of being controlled only by its own
- laws, and not subject to any higher one; (b) organic independence 3. a self-governing community.

autonomous:

- 1. of or pertaining to an autonomy
- possessed of autonomy, <u>self governing, independent</u>
 (biological) (a) conforming to its own laws only, and not subject to higher ones; (b) independent, i.e., not a mere form or state of some other organism.
- automate: to apply automation to; to convert to largely automatic operation

automation: automatic control of the manufacture of a product through a number of successive stages; the application of automatic control to any branch of industry or science; by extension, the use of electronic or mechanical devices to replace human labour

Autonomous and Cooperative ITS

SAE J3016 Definitions – Levels of Automation

SAE	Name	Narrative Definition	Execution of Steering/ Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (<i>Driving M</i> odes
	Human dr	ver monitors the driving environment				
0	No Automation	the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes
Auton	nated driving sys	stem ("system") monitors the driving environment				
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

Example Systems at Each Automation Level

Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> function and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist (Mercedes, Tesla, Infiniti, Volvo) Parking with external supervision	Must monitor driving environment (system nags driver to try to ensure it)
3	Traffic Jam Pilot	May read a book, text, or web surf, BUT be prepared to intervene when needed
4	Highway driving pilot Closed campus driverless shuttle "Driverless" valet parking in garage	May sleep, and system can revert to minimum risk condition if needed
5	Automated taxi (even for children) Car-share repositioning system	No driver needed CALIFORNIA

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Automation Is a Tool for Solving Transportation Problems

- Alleviating congestion
 - Increase capacity of roadway infrastructure
 - Improve traffic flow dynamics
- Reducing energy use and emissions
 - Aerodynamic "drafting"
 - Improve traffic flow dynamics
- Improving safety
 - Reduce and mitigate crashes

...BUT the vehicles need to be connected

Alleviating Congestion

- Typical U.S. highway capacity is 2200 vehicles/hr/lane (or 750 trucks/hr/lane)
 - Governed by drivers' car following and lane changing gap acceptance needs
 - Vehicles occupy only 5% of road surface at maximum capacity
- Stop and go disturbances (shock waves) result from drivers' response delays
- V2V Cooperative automation provides shorter gaps, faster responses, and more consistency
- <u>I2V Cooperation</u> maximizes bottleneck capacity by setting most appropriate target speed
- → Significantly higher throughput per lane
- → Smooth out transient disturbances

Reducing Energy and Emissions

- At highway speeds, half of energy is used to overcome aerodynamic drag
 - Close-formation automated platoons can save
 10% to 20% of total energy use
- Accelerate/decelerate cycles waste energy and produce excess emissions
 - Automation can eliminate stop-and-go disturbances, producing smoother and cleaner driving cycles
- I2V communication of traffic signal status enables eco-driving (smoother, more efficient)
- BUT, this only happens with cooperation

Improving Safety

- 95% of crashes in the U.S. are caused by driver behavior problems (perception, judgment, response, inattention) and environment (low visibility or road surface friction)
- Automation avoids driver behavior problems
- Appropriate sensors and communications are not vulnerable to weather problems
 - Automation systems can detect and compensate for poor road surface friction
- BUT, current U.S. traffic safety sets a very high bar:
 - 3.3 M vehicle <u>hours</u> between fatal crashes (375 years of non-stop 24/7 driving)
 - 65,000 vehicle <u>hours</u> between injury crashes (7+ years of non-stop driving)

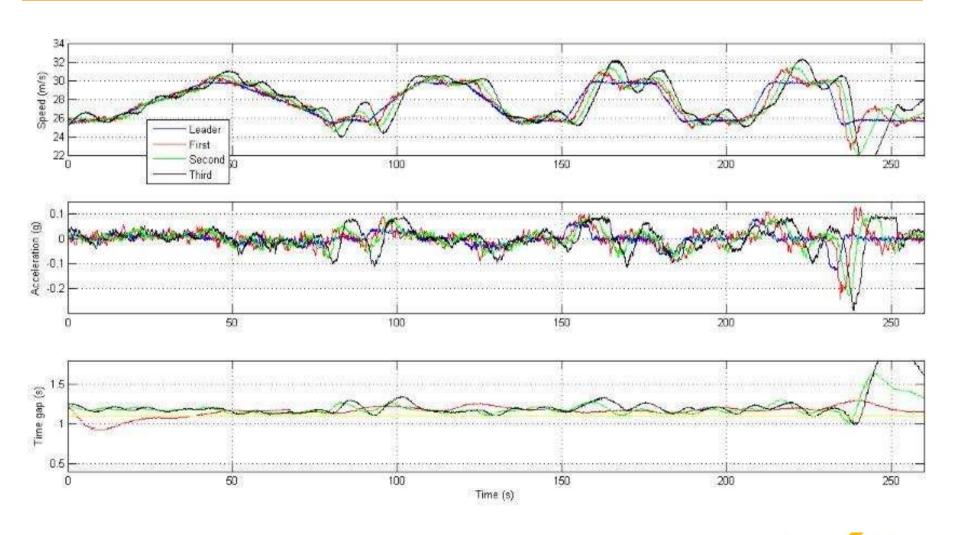
Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

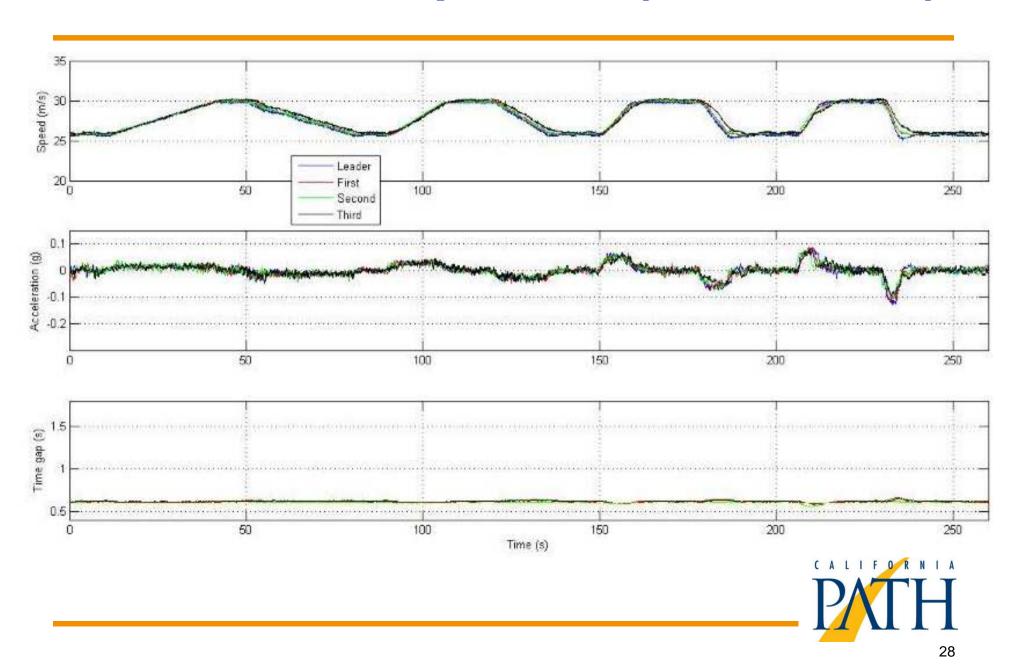
Cooperation Augments Sensing

- Autonomous vehicles cannot "talk" or "listen"
- Cooperative vehicles can "talk" and "listen" as well as "seeing" (using 5.9 GHz DSRC comm.)
 - NHTSA regulatory mandate in process in U.S.
- Communicate vehicle performance and condition directly rather than sensing indirectly
 - Faster, richer and more accurate information
 - Longer range
- Cooperative decision making for system benefits
- Enables closer separations between vehicles
- Expands performance envelope safety, capacity, efficiency and ride quality

Examples of Performance That is Only Achievable Through Cooperation


- Vehicle-Vehicle Cooperation
 - Cooperative adaptive cruise control (CACC) to eliminate shock waves
 - Automated merging of vehicles, starting beyond line of sight, to smooth traffic
 - Multiple-vehicle automated platoons at short separations, to increase capacity
 - Truck platoons at short enough spacings to reduce drag and save energy
- Vehicle-Infrastructure Cooperation
 - Speed harmonization to maximize flow
 - Speed reduction approaching queue for safety
 - Precision docking of transit buses
 - Precision snowplow control

Example 1 – Production Autonomous ACC (at minimum gap 1.1 s)

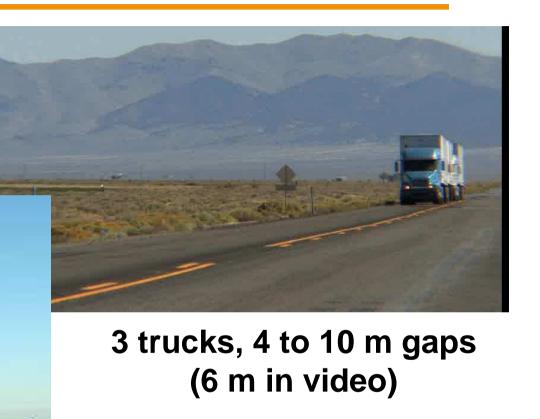

Response of Production ACC Cars

Example 2 – V2V Cooperative ACC (at minimum gap 0.6 s)

V2V CACC Responses (3 followers)

PATH Automated Platoon Longitudinal Control and Merging (V2V)

1997



PATH V2V Truck Platoons (2003, 2010)

2 trucks, 3 to 10 m gaps

PATH Magnetic Bus Guidance in Eugene, OR

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

No Automation and Driver Assistance (Levels 0, 1)

- Primary safety advancements likely at these levels, <u>adding</u> machine vigilance to driver vigilance
 - Safety warnings based on ranging sensors
 - Automation of one function facilitating driver focus on other functions
- Driving comfort and convenience from assistance systems (ACC)
- Traffic, energy, and environmental benefits depend on cooperation
- Widely available on cars and trucks now

International Standards for Level 1 Driving Automation Systems

- ISO 15622 Adaptive Cruise Control
- ISO 22178 Low Speed Following
- ISO 22179 Full Speed Range Adaptive Cruise Control
- ISO 11270 Lane Keeping Assistance
- ISO 16787 Assisted Parking System
- (in development) Cooperative Adaptive Cruise Control

Partial Automation (Level 2) Impacts

- Primarily on limited-access highways
- Somewhat increased driving comfort and convenience (but driver still needs to be actively engaged)
- Possible safety increase, depending on effectiveness of driver engagement
 - Safety concerns if driver "tunes out"
- (only if cooperative) Increases in energy efficiency and traffic throughput
- When? Now (Mercedes, Infiniti, Volvo, Tesla)

Intentional Mis-Uses of Level 2

Mercedes S-Class

Infiniti Q50

Let's see how well the Active Lane Control works on the new Infiniti Q50S

International Standards in Development for Level 2 Driving Automation Systems

- Partially Automated Parking Systems
- Partially Automated In-Lane Driving Systems
- Partially Automated Lane Change Systems

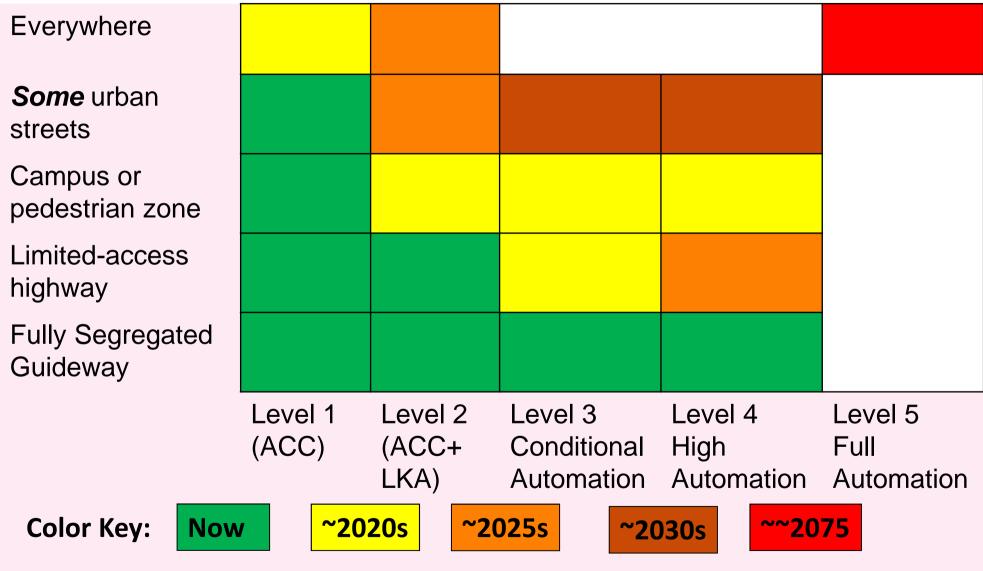
Conditional Automation (Level 3) Impacts

- Driving comfort and convenience increase
 - Driver can do other things while driving, so disutility of travel time is reduced
 - Limited by requirement to be able to retake control of vehicle in a few seconds when alerted
- Safety uncertain, depending on ability to retake control in emergency conditions
- (only if cooperative) Increases in efficiency and traffic throughput
- When? Unclear safety concerns could impede introduction

High Automation (Level 4) Impacts – General-purpose light duty vehicles

- Only usable in some places (limited access highways, maybe only in managed lanes)
- Large gain in driving comfort and convenience on available parts of trip (driver can sleep)
 - Significantly reduced value of time
- Safety improvement, based on automatic transition to minimal risk condition
- (only if cooperative) Significant increases in energy efficiency and traffic throughput from close-coupled platooning
- When? Starting 2020 2025?

High Automation (Level 4) Impacts – Special applications


- Buses on separate transitways
 - Narrow right of way easier to fit in corridors
 - Rail-like quality of service at lower cost
- Heavy trucks on dedicated truck lanes
 - (cooperative) Platooning for energy and emission savings, higher capacity
- Automated (driverless) valet parking
 - More compact parking garages
- Driverless shuttles within campuses or pedestrian zones
 - Facilitating new urban designs
- When? Could be just a few years away

Full Automation (Level 5) Impacts

- Ubiquitous electronic taxi service for mobilitychallenged travelers (young, old, impaired)
- Ubiquitous shared vehicle fleet repositioning (driverless)
- Driverless cargo pickup and delivery
- Full "electronic chauffeur" service anywhere
- Ultimate comfort and convenience
 - Travel time disutility plunge
- (if cooperative) Large energy efficiency and road capacity gains
- When? Many decades... (Ubiquitous operation without in driver is a huge technical challenge)

Personal Estimates of Market <u>Introductions</u> **(based on technological feasibility)**

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

Traffic Safety Challenges for Full Automation

- Extreme external conditions arising without advance warning (failure of another vehicle, dropped load, lightning,...)
- NEW CRASHES caused by automation:
 - Strange circumstances the system designer could not anticipate
 - Software bugs not exercised in testing
 - Undiagnosed faults in the vehicle
 - Catastrophic failures of vital vehicle systems (loss of electrical power...)
- Driver not available to act as the fall-back

Why this is a super-hard problem

- Software intensive system (no technology available to verify or validate its safety under its full range of operating conditions)
- Electro-mechanical elements don't benefit from Moore's Law improvements
 - Cannot afford extensive hardware redundancy for protection from failures
- Harsh and unpredictable hazard environment
- Non-professional vehicle owners and operators cannot ensure proper maintenance and training

Safety Challenges for Full Automation

- Must be "significantly" safer than today's driving baseline (2X? 5X? 10X?)
 - Fatal crash MTBF > 3.3 million vehicle hours
 - Injury crash MTBF > 65,000 vehicle hours
- Cannot <u>prove</u> safety of software for safety-critical applications
- Complexity cannot <u>test</u> all possible combinations of input conditions and their timing
 - How many hours of testing are needed to demonstrate safety better than this?
- How many hours of <u>continuous</u>, <u>unassisted</u> automated driving have been achieved in real traffic under diverse conditions?

Much Harder than Commercial Aircraft Automation

Measure of Difficulty – Orders of Magnitude	Factor
Number of targets each vehicle needs to track (~10)	1
Number of vehicles the region needs to monitor (~10 ⁶)	4
Accuracy of range measurements needed to each target (~10 cm)	3
Accuracy of speed difference measurements needed to each target (~1 m/s)	1
Time available to respond to an emergency while cruising (~0.1 s)	2
Acceptable cost to equip each vehicle (~\$3000)	3
Annual production volume of automation systems (~106)	- 4
Sum total of orders of magnitude	10

Human Interactions with Technology

- Fundamental changes in the nature of the driving task
- Driver capabilities and preferences are extremely diverse, across <u>and</u> within drivers
- Unclear how to "train" drivers to acquire correct mental models of capabilities and limitations of automation systems
- Drivers will "push the envelope" beyond system capabilities, which could become extremely dangerous
- No viable experimental protocols to safely test drivers' usage of higher automation levels

Outline

- Historical development of automation
- Levels of road vehicle automation
- Benefits to be gained from automation
- Why cooperation is needed
- Impacts of each level of automation on travel (and when?)
- Challenges (technical and non-technical)
- What to do now?

What to do now?

- Focus on connected vehicle capabilities to provide technology for cooperation (V2V and I2V)
- Deploy Level 1 automation widely
- For earliest public benefits from higher levels of automation, focus on transit and trucking applications in protected rights of way
 - Professional drivers and maintenance
 - Direct economic benefits
- Develop fundamental enabling technologies for Level 4 and 5 automation (software verification and safety, real-time fault identification and management, hazard detection sensing,...)

