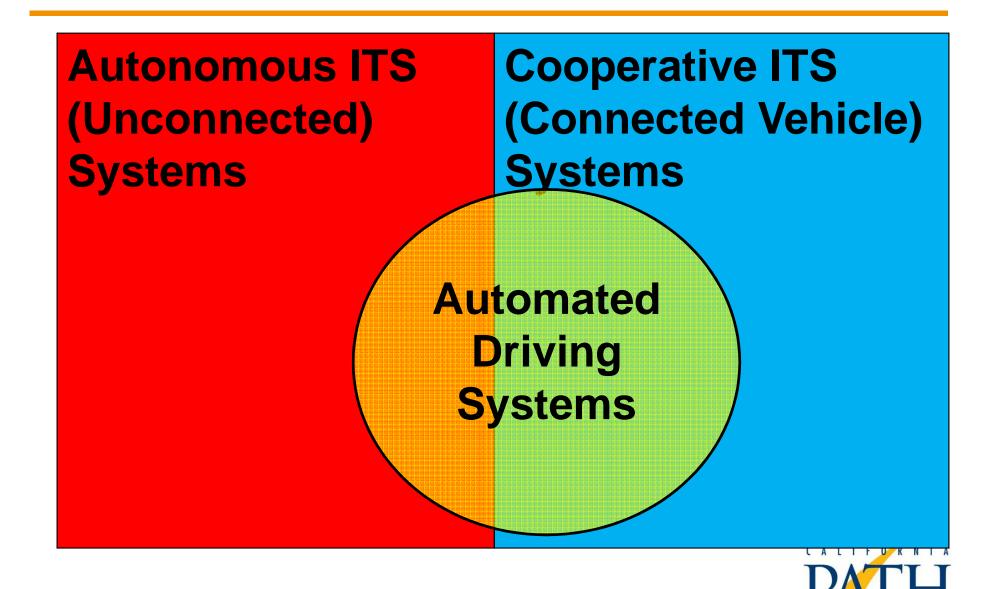
PATH Experience in Road Vehicle Automation


November 2015

Vehicle Control and Automated Driving Research at PATH

- Strong emphasis for 25+ years → over 600 labor years of PATH effort
- Approached from perspectives of vehicle dynamics and control and human factors
 - Deep understanding of mechanical dynamics of vehicles
 - Designing for both high positioning accuracy and smooth ride quality
 - Driver and passenger acceptance based on ride quality and user interfaces
- Experimental verification on full-scale vehicles (20+
 passenger cars, 7 heavy trucks, 6 transit buses, 1
 snowblower)

Autonomous and Cooperative ITS

Automation is a Tool for Solving Transportation Problems

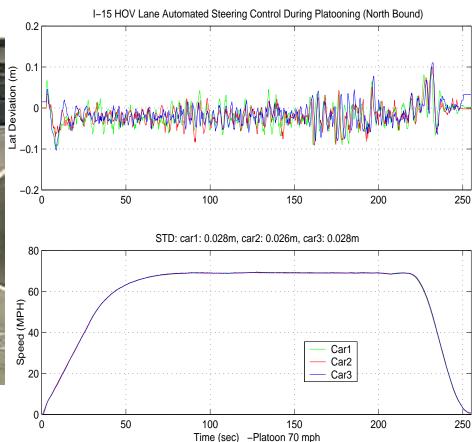
- Alleviating congestion
 - Increase capacity of roadway infrastructure
 - Improve traffic flow dynamics
- Reducing energy use and emissions
 - Aerodynamic "drafting"
 - Improve traffic flow dynamics
- Improving safety
 - Reduce and mitigate crashes
- Using V2V and I2V connectivity to gain these benefits

PATH Automation Milestones

- 1988 Basic AHS concepts defined
- 1991 Hierarchical information architecture
- 1992 First automated vehicle experiments (4-car longitudinal control platoon, one car automated steering control) and first FHWA funding support
- 1993 AHS Precursor System Analyses
- 1994-8 National AHS Consortium (including Demo '97)
- 1998 Demo '98, Netherlands
- 2000 Demo 2000, Japan
- 2003 Bus and truck automation demonstrated
- 2007-11 Mobility Applications for VII project
- 2013 New CA DMV and FHWA EARP projects
- 2014 Bus guidance in public service

Key Accomplishments in Automation

- Definition of hierarchical architecture to simplify design and development of automation systems
- Creation of modeling and simulation tools to evaluate system designs and performance
- Development of high-performance automated test vehicles, both light and heavy duty
- Proving feasibility of high-accuracy vehicle control, while maintaining passenger comfort
- Demonstrating that automated driving is pleasant rather than threatening
- Public implementation of bus guidance


Lateral Control (Automatic Steering)

- Many projects over 20+ years
- Extremely high performance systems, exceeding capabilities of human drivers
 - Precision docking bus (within 1 cm)
 - High-g curve following (0.8 g lateral)
 - High-speed reverse driving (>50 km/h)
 - High-speed lane tracking (to 170 km/h)
- Lane referencing from magnetic markers (our invention), DGPS/INS with digital maps, and video image processing

Consistent, Accurate Steering on Highway

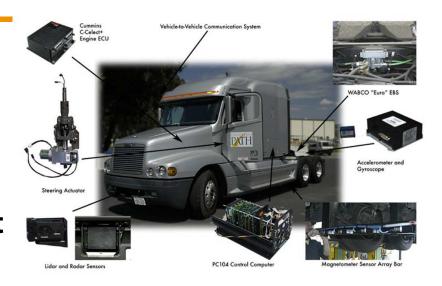
 3 cm lateral variations at every location at highway speeds

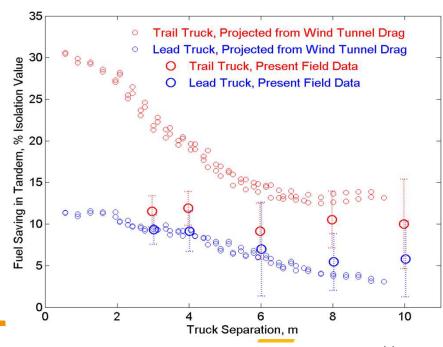
Automatic Longitudinal (Platoon) Control

- Engines and brakes of conventionally powered vehicles can be controlled accurately enough for precision vehicle following in platoons (20 cm accuracy)
- Precise vehicle following can be done with smooth ride quality
- Vehicles can be driven in close-formation platoons (3 – 5 m gaps) without exposing occupants to exhaust gases or impeding cooling air to radiators
- Vehicles can merge into the middle of a passing platoon, using wireless coordination.

Automated Platoon Longitudinal Control and Merging

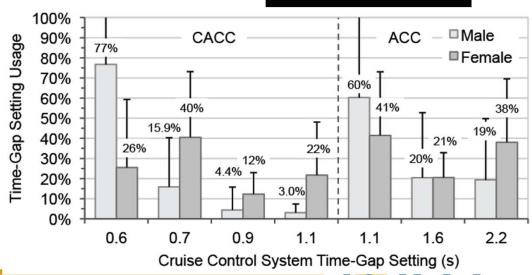
1997





Automated Truck Platooning, 2003-11

- Developed and tested 2- and 3truck platoons under automatic spacing control at gaps from 3 m to 10 m
- All hardware and software implementation by PATH, without industry help
- Fuel savings of 10 -15%
- Current EAR project with Caltrans, Volvo – 3-truck CACC


Cooperative Adaptive Cruise Control (since 2002)

- 3 generations of design, sponsored by Caltrans, FHWA and Nissan
- First-generation system showed driver acceptance of short gap following (0.6 s)
- Second generation showed string stability
- Traffic simulations showed lane capacity doubling potential
- Third generation for STOL Laboratory - 2015
- Current EAR project on CACC string strategies

Other Recent Automation Projects

- International scan of state of development of automation for FHWA EARP helped stimulate U.S. program – 2012 reports
- NCHRP 20-24(98) AASHTO research roadmap on automation topics for state and local governments - 2014
- Technical support for California DMV in development of state regulations for public use of automated driving systems - ongoing
- Modeling of benefits of adding V2X to automation systems (Toyota ITC) - new