Environmental Impact of Production-Ready Connected and Automated Vehicles (CAVs) on Arterials

Soomin Woo¹, Mingyuan Yang¹, Xingan (David) Kan¹,², and Alex Skabardonis¹
¹Civil and Environmental Engineering at University of California, Berkeley
²Civil, Environmental, and Geomatics Engineering at Florida Atlantic University

Automated Vehicles Symposium 2020
Introduction

Commercially available automation in vehicles

• Adaptive Cruise Control (ACC)
 • Automatically maintain a desired speed and/or a safe following distance
 • A shorter detection range and a longer response time than human drivers
 • Can worsen the traffic stability

• Cooperative Adaptive Cruise Control (CACC)
 • Use Vehicle-to-Vehicle (V2V) communication and share information real-time
 • Multiple vehicles adjust speeds almost simultaneously in a string with shorter gaps
 • Potentially increase capacity and reduce fuel consumption and emissions.
Introduction

At the early stage of implementation

• Mixed traffic with human-driven vehicles, ACC vehicles, and CACC vehicles

• Sparse distribution of CACC vehicles
 • Less likely to find other CACC vehicles and form a string with shorter gaps
 • CACC vehicles will be operating in ACC mode

This CACC vehicle cannot form a platoon with a vehicle without CACC

In platoon

CACC non-CACC
Research Objective

To examine how the effect of CACC vehicles on capacity, fuel consumption, and emissions at various market penetrations in an arterial corridor with multiple signalized intersections.
Methodology

Overview

• Microscopic simulation
 • Mixed traffic with human-driven, ACC, and CACC vehicles
 • Various market penetrations of CACC vehicles
 • Output: the detailed trajectories of simulated vehicles
• Estimate the fuel consumption and emissions
• Estimate the bottleneck capacity
Methodology

Microscopic Simulation

PATH model, developed by UC Berkeley\(^1\)

- Describes mixed traffic of human-driven, ACC, and CACC vehicles
- Integration of human-driven model (NGSIM oversaturated flow human driver model) and ACC/CACC model (calibrated with field data on CACC vehicle strings)

Methodology

Analysis of Fuel Consumption and Emissions

Autonomie, developed by Argonne National Lab2.

- Estimates the fuel consumption and emissions
- Based on simulation of powertrain dynamics for individual vehicles from the trajectory data
- Validated for several powertrain configurations and vehicle classes using field data.

Methodology

Experiment Setup

- Aimsun to emulate an arterial network traffic at capacity
 - CACC penetration rates = [0, 25, 50, 75, 100%]
- Estimate the capacity of a major bottleneck in the network
- Estimate the fuel consumption, and emissions
Methodology

San Pablo Network in Berkeley, California

- 3.25-km section in Berkeley, California
 - 2 lanes per direction
 - 10 signalized intersections
 - Speed limit of 50 km/hr.
- Evening peak congestion (4:30 - 5:30 PM) in the north-bound traffic
- Calibrated traffic demand and signal timing plan

Fig. 1. San Pablo Network
Results

Highlights

Low CACC penetration (≤25%)
- Lower capacity and higher fuel consumption and emissions
- Why? CACC vehicles revert to ACC mode due to the low probability of forming a string and operate with limited detection range and response latency.

As penetration increases (>25%)
- Traffic capacity increases and fuel consumption
Results

Traffic Flow

Fig. 2. validates the traffic simulation. The contour shows that a bottleneck forms at the intersection of San Pablo Avenue and University Avenue.

Fig. 2. Speed Contour at Major Bottleneck (25% CACC)
Results

Traffic Flow

• At low penetration of CACC vehicles (25%), capacity is lower compared to the case with no CACC vehicles.
• As the penetration increases, the capacity increases.

![Fig. 3. Bottleneck Capacity at Various CACC Penetration Rates](image-url)
Results

Environmental Impact

• At low penetration of CACC vehicles (25%), the fuel consumption and emission increase.

• As penetration increases, the fuel consumption and emissions decrease significantly.

Fig. 4. Average Fuel Consumption and Greenhouse Gas Emissions at Various CACC Penetration Rates
Future Work

• Field tests to study the characteristics of production ACC and CACC vehicles

• More accurate estimate of the traffic and environmental impact that connected and automated vehicles could bring
Acknowledgement

We thank our Master of Engineering students for collaboration, namely Lingjie Li, Yipeng Zhang, Di Chen, Hanrui Cui, Zheng Liu, and Zhexu Wu.
Contact

For questions or feedback, please email soomin.woo@berkeley.edu