When AI Meets AV

Challenges and Opportunities

Ching-Yao Chan Co-Director Berkeley DeepDrive, UC Berkeley

C2V2.ATSummerSchool, *AI-EnabledMobility Sept. 14, 2020*

Presentation Outline

- AI for AV How and Where?
- AV/AI Research at UC Berkeley
 - Berkeley DeepDrive (BDD)
 - Selective Research Highlights
- AV+AI Challenges and Opportunities
- Concluding Remarks

When AI meets AV

A Powerful Enabler

A Fitting Challenge

AI for AV, Where and How?

Automated Driving Systems (ADS) - Functional Block Diagram

Automated Driving Systems (ADS) System Integration and Functional Blocks

Perception by Deep Learning

Berkeley DeepDrive

Automated Driving Systems (ADS) System Integration and Functional Blocks

Decision Making and Planning

Machine learning approaches can enhance rule-based methods in

- Prediction
- Behavior
- Trajectory planning

Automated Driving Systems (ADS) System Integration and Functional Blocks

Control and Actuation

Deeping Learning for Intelligent Powertrain

I-Ming Chen, BDD, UC Berkeley

Behavior of the DQN controller for HEV powertrain:

- Reasonable gear shifting maneuver
- Hybrid mode at low vehicle speed
- ICE mode at high vehicle speed
- Braking regeneration

Drive Toward Intelligent Autonomy Automated Driving Systems

Al/Autonomous Driving Research at Berkeley

BAIR-BDD Community at Berkeley

- Three Parallel Programs
 - Berkeley Artificial Intelligence Research (BAIR)
 - Berkeley DeepDrive (BDD)
 - BAIR Open Research Commons (BAIR ORC)

Berkeley DeepDrive

Our Mission

Merge Machine Learning and Computer Vision to

Enable Intelligent Autonomy, with Applications for

Autonomous Driving and Robotics

BDD Research Domains See deepdrive.berkeley.edu for Research Activities

Berkeley DeepDrive

Selective Research Highlights

Selective Research Highlights

- Data
 - From image to video
 - From object recognition to tracking
 - What if you have too much data?

Sensing and Perception

Deep learning enables a renaissance in computer vision (images: BDD-100k)

Berkeley DeepDrive

Has the machine seen this data before?

Scene Novelty Prediction from Unsupervised Discriminative Feature Learning,

Arian Ranjbar, Daniel Ye, Sascha Hornauer, Ching-Yao Chan, Stella Yu

Source: Sarcha Hornauer BDD Workshop: 09/2019

Berkeley DeepDrive

Retrievals of Similar Scenes

Source: Sarcha Hornauer BDD Workshop: 09/2019

Selective Research Highlights

• Data

- From image to video
- From object recognition to tracking
- Confidence on data based on scene similarity
- • •
- Learning to drive
 - Learning reward and policy
 - Meta learning What if you don't have enough data?
 - How to apply Deep Reinforcement Learning for Tracking Control?

Decision-making Strategy based on Adversarial-IRL

Meta-Adversarial Inverse Reinforcement Learning:

- Learn decision on when and where to change lanes (AIRL)
- Learn multiple behaviors (Info-AIRL)
- Learn an *adaptable policy and a reward function* from demonstrations for quick and continuous learning (*Meta-AIRL*)

Learning to Drive with Different Styles

0

. . .

10

Berkeley DeepDrive

aggressive

Max_acc

10

0.8

0.6

0.4

0.2

0.0

expert

AIRL

-2

meta AIRL

Source: Pin Wang BDD Workshop: 05/2020

Meta Learning for Automated Lane Change Maneuvers

- * Meta-Learner (Outer-level)
 - Meta-learner enables efficient adaption of the lane change to new situations
- * Task-Learner (Inner-level)
 - Task learner learns a decision-making strategy for automated lane change

Source: Fei Ye Project Update: 08/2020

Berkeley DeepDrive

Simulation at Different Traffic Conditions

- Highway exit behavior under light, moderate, dense traffic conditions
 - Ego vehicle: red color
 - Other vehicles: blue color

Source: Fei Ye Project Update: 08/2020

Control Architecture for Dual Use of A Traditional Controller and A RL Controller in Parallel

Problems:

- During training, one failing step can cause erratic tracking actions.
- When the reference path changes, DRL controller becomes unstable.

Revised Architecture:

- PP provides a basic path following capability guiding DRL.
- DRL provides adaptability and optimality.

• RL output has the potential to supplement and/or enhance the traditional controller

Source: I-Ming Chen Project Update: 04/2020

PP+DRL Controller versus MPC

- The actual execution time of the simulation is 5.6s for PPO+PP and 138.4s for MPC with Intel Core i7-8565U CPU @ 1.80GHz.
- Considering the tracking accuracy and computing cost, the proposed PP+PPO is effective and suitable for real-time control.

Challenges in Realizing AV

- What must be overcome?
 - Technical
 - > Safety concerns
 - User Expectation
 - > Market Acceptance
 - > Legal

▶ ...

Challenges in Realizing AV

> Misuse & Malfunctioning

Tesla Fatality Incident (May 2016, Florida)

What Happened?

Tesla Fatality Incident (May 2016, Florida)

- Tesla cruise control set at 74 mph.
- Neither human nor the machine hits the brake.
- Driver's hands on wheel for only 25 seconds during 37minute period
- Driver ignored 7 visual warnings and 6 audible warnings during the trip

déjà vu?? Tesla Fatality Incident (March 2019, Florida)

- Autopilot activated 10 seconds before
- Tesla cruise control set at 68 mph.
- Neither human nor the machine hit the brake.
- Almost a complete duplicate of 2016 accident,
 - Despite hardware and software updates

Tesla Fatality Crash (Mountain View, CA, March 2018)

epDrive

Tesla 03/18 Fatality Crash

Berkeley DeepDrive
Approach to Divider

Errors in:

d44c83 = P https://weibo.com/tv/v/63299a963968b9cbdb7ffc b37?fid=1034:63299a963968b9cbdb7ffc1d44c83b37

Berkeley DeepDrive

Automated Driving Systems per SAE 3016

- Automation Level
- •
- •
- |||
- IV
- V **Driver off** •
- We can say "machine is automated up to this level", but
- Do we have much say in "what drivers will do"?

- Human/Machine Roles
- Feet or Hands off
- Feet and Hands both off
- Eyes (Perception & Response) off
- Mind off

Take Over, Please?

Challenges in Realizing AV

Misuse and Associated Accidents Safety Performance

How Bad Are Human Drivers?

- >90% crashes caused by driver errors.
- In US the numbers are roughly one fatality per 80+M vehicle-miles travelled. (per National Safety Council 2015-2016)
 - 80 million vehicle-miles per fatality
 ~ = 20,000 miles/per year X 50 years X 80 life-times
- How many ADS teams are confident that their systems can do better than the above?

How Safe is Safe Enough?

- In comparison to other travel options
 - Are we creating a new travel mode, compatible with an existing and much better performing system? or
 - Are we providing a crew of drivers that can perform better than current (human) drivers on average?

Figures: 2000 - 2009, US

How Safe is Safe Enough?

- If AVs are better than average drivers statistically (total numbers and severity of incidents) but sometimes make mistakes, can we accept and deploy them?
- What are additional safety risks?
- How small is acceptable?

Challenges in Realizing AV

Misuse and Associated Accidents Safety Expectation and Reality

How Soon will it become widely Available? (Source: Silicon Valley Mobility, 07/2017)

Autonomous driving market forecasts align with characteristics from other innovation and provide a perspective for the next 30 years

-1 31 20172 -1 41 20202 -1 51 20352 - Digital photo 19952 - Digital music 19982 - Smartphone 20032

Realistically, this will take 2-3 decades, if not longer.

But, investors who have put in 10B's want to have their return soon (now).

Errh, **Overestimation?**

Waymo is worth \$175 105 billion, Morgan Stanley says.

- 1. Things are not happening fast.
- 2. Waymo will still be a leader by 2030.

Source: Various business news, 08/2018 Update, 09/2019

Will it (robot taxi) be here?

GM's Cruise Plans to Operate Autonomous Taxi in 2019 Later

- *The Street, 06/2018*
- Various media reports, Postponed, 07/2019

Waymo CEO Says Self-Driving Cars Won't Be Ubiquitous for Decades

John Krafcik, Waymo CEO

- Bloomberg, 11/2018

No Self-Driving Cars in my life time (probably)

Steve Wozniak, Apple Co-Founder

- Various Media, 10/2019

There'll Be Hundreds Of Self-Driving Cars On The Road In Five Years

Chris Urmson, Formerly Waymo, now CEO of Aurora

- Forbes, 10/2019

We will have self-flying cars before self-driving cars

Sebastian Thrun, Google self-driving team founder

- Various Media, 10/2019

AI is Great for AV, but ...

Challenges When AI Meets AV

Culture Clash

DARPA Challenges and Google AV

- DARPA challenges in 2000s' stirred up momentum in AV technologies
- Google established AV Google-X team
- Automakers and technology industry powered ahead the push into ADS
- Wall Street craze for mobility service enticed investments into AV

Automotive Industry versus Technology Industry

Automotive Sector

- Conservative
- Slow moving
- HW manufacturer
- 4-5 year model cycle
 + 10-20 years usage
- Let's make sure.

- Technology Sector
- Aggressive
- Fast paced turnover
- Software innovator
- 6 months 2 years design and replacement
- We can do it!

Two seemingly incompatible sectors, now competing in the same sector

Challenges when AV meets AI

Culture Clash

> Achieving common-sense AI for AV

Real World is More Complex than Training

Unusual Suspects

shutterstock.com • 544955284

Saw this bus today on the way to work this morning. Loved it." -Grant Patterson, Perth

ey DeepDrive

Challenges

Opportunities

Opportunities

Misuse & Reliability

→ New and Supplementary Technologies

> lidar, driver monitoring, HD map, machine learning,

Emerging and Improving Technologies

Opportunities

Safety

→ Risk Management (Limited ODD)

Safety Management

- Limited Operational Design Domain (ODD)
 - Robot Taxi in Geofenced Area
 - Low speed driverless shuttle
 - •

Opportunities

Expectation and Delayed Deployment

→ Special use cases in mining, airport, factory, corporate campus, retirement villages, etc.

Near Term Deployment

eley DeepDrive

Opportunities

- > Toward Human Intelligence
 - → Continuing Progress in Machine Learning

Machine Learning

Lifelong Learning

Motivation:

Life-long learning that allows the machine to generalize and to adapt to new environment/tasks

Approach:

While general AI is not here yet,

Combinational use of various machine learning techniques offers an alternative.

Concluding Remarks

Demo '97: Platoon Scenario

- Development by California PATH, General Motors, Delphi, Delco Electronics, Hughes and Caltrans
- Showcase a fully automated highway system
 - Lateral control based on magnetic guidance
 - Longitudinal control at 6 meters spacing
 - Automated lane changing
 - Coordination layer control

Then and Now

This is an exciting era for AI and AV.

A.I. – The revolution hasn't happened yet.

Michael Jordan, UC Berkeley

Towards Human-Level AI

- AI systems will eventually make better decisions than humans.
- Still missing:
 - Real understanding of language
 - Integration of learning with knowledge
 - Long-range thinking at multiple levels of abstraction
 - Cumulative discovery of concepts and theories
- <u>When?</u>
 - Date unpredictable

*Provably Beneficial AI, Stuart Russell, UC Berkeley, BDD Workshop, 11/2018

Can We Accept Imperfect Automation or AI?

Intelligence *≠* Perfection

Artificial or Human

- AV is a revolutionary transformation for the automotive and transportation industries.
- The revolution in AI will propel AV further forward in a significant manner.

Thank you.

Ching-Yao Chan cychan@berkeley.edu

https://deepdrive.berkeley.edu/

