
  

 

Abstract—Decision making for lane change is an important 

challenge for automated vehicles, especially in complex traffic 

environments. In recent years, there have been studies that 

utilize reinforcement learning for lane change applications. 

However, such an approach requires high computational costs 

and is difficult to implement by parallel computing. To overcome 

the problem, an evolutionary learning approach is put forward 

for the decision-making application of autonomous driving. By 

deploying the parallel workers, making parameters of the neural 

network mutate and recombining the well-behaved off-springs 

during the evolutionary learning process, the Evolution Strategy 

(ES) agent learns to make decisions for lane-change maneuvers. 

At the same time, safety verification is performed, which ensures 

driving safety and simplifies the learning process. To test the 

performance of the proposed method, a highway simulation 

environment is established. The results show that the 

combination of the high-level evolutionary learning and 

low-level safety verification jointly achieve efficient driving 

behavior control.   

 

Key words—Evolutionary learning, Lane change, Decision 

making  

I. INTRODUCTION 

One key challenge in developing autonomous driving is 
the behavioral decision making in complex traffic 
environments. Inappropriate lane changes are demonstrated to 
cause about 4% to 10% traffic accidents [1]. Besides, these 
lane-change maneuvers and incidents are regarded as the 
anomaly that potentially impacts safety and interferes with 
traffic flow by causing the propagation of shock wave [2]. To 
realize efficient decision making for driving, the real-time 
surrounding traffic environment should be monitored and 
modelled, and the probable trajectories of various traffic 
participants should be predicted. Thus, developing an 
efficient decision-making process for lane change 
maneuvering is highly desirable, by exploring the 
environment and learning from the experience automatically. 

Rule-based models are commonly used for the task of 
decision making for lane change maneuvers, in which the 
automated vehicle changes lane according to specific rules 
such as the gap acceptance model [3], the 
minimize-overall-braking induced by lane changes (MOBIL) 
model [4] and Cellular Automata Model [5]. However, 
vehicles using rule-based models are too cautious in the 
various and complex traffic situations, which leads to the 
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unnecessary delay. Another approach is the application of the 
game theory model, in which the problem is solved where the 
automated vehicle interacts with other vehicles in a way that 
maximizes the expected reward [6]. Nevertheless, there is a 
limited number of vehicles which are considered in the game 
theory. The utility-based model is also applied to maximize 
the lane change utility based on the partially observable 
Markov decision process (POMDP) [7], which requires the 
complex calculation. Thus, the common problems of 
aforementioned models are that they are aimed at a certain 
traffic scene and a complex procedure is required for 
interpreting a different scene. Compared with these models, 
the deep learning methods have advantages of exploring the 
environment and learning from the experience, which is 
suitable for overcoming these problems. 

Deep learning algorithms have been used in the 
autonomous driving successfully. For instance, the 
bidirectional Recurrent Neural Network (RNN) is conducted 
to assess the traffic scene and classify the driving situation [8]. 
The deep convolutional neural network (DCNN) is trained to 
classify whether the adjacent lane is blocked or free based on 
the rear side view images [9]. The Inverse Reinforcement 
Learning (IRL) model is implemented to extract the individual 
driving style and plan the driving trajectory [10]. The Deep 
Deterministic Policy Gradient (DDPG) model is used to learn 
the driving maneuver for the overtaking and car-following 
operation [11, 12]. These works lay a foundation for the 
behavior control of the automated vehicle by deep learning. 

Based on a literature review of the lane-change 
decision-making problem, it can be found that the 
Reinforcement Learning (RL) method has been applied in this 
field, particularly in the last few years. The Deep Q-Network 
agent and Deep Deterministic Actor Critic (DDAC) agent 
have been introduced to handle the speed control problem and 
the on-ramp merging problem for automated vehicles [13]. In 
the specific lane-change scenario, the deep Q-learning 
algorithm is also adopted to learn to make decisions about 
acceleration and deceleration [14]. Besides, the rule-based 
control is combined with the deep Q-learning algorithm to 
achieve a faster learning rate [15]. The existing research has 
demonstrated the ability of these learning approaches for 
achieving safe lane change. However, owing to the feature of 
Q-learning and policy gradient optimization method, the full 
gradient must be communicated across different processes, 
which causes a high communicational cost during the training 
stage. Besides, the gradient estimate may be biased when the 
action has long-lasting effect, which obstructs the learning 
process.  

To overcome these limitations of the existing work, we 
propose a decision-making method for lane change based on 
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the Evolutionary Strategy (ES) [16]. To our best knowledge, 
this is the first application of the ES algorithm in the field of 
decision-making research for lane change. ES is a kind of 
black box optimization algorithm, which imitates the natural 
evolution procedure: the different generation is regarded as 
the iteration, the parameter vectors is regarded as the 
genomes, and the perturbation of the parameter is treated as 
the mutation [16]. After the generation is mutated, the 
well-behaved offspring is selected and recombined to produce 
the next offspring. The evolution procedure will be repeated 
until the objective is totally optimized. Compared with the 
Q-learning and policy gradient optimization models, the 
evolution term is independent of the time step, thus the ES 
algorithm is effective when the action has long-lasting effects. 
Additionally, the communication is only focused on the scalar 
return and random seed rather than the full gradient. As a 
result, the ES algorithm is highly parallelizable and has fewer 
hyperparameters. Conceptually, the ES algorithm seems like 
the action of hill-climbing in a high-dimensional space relying 
on the finite variances along several random directions at each 
time step. 

The ES algorithm belongs to the evolutionary algorithms 
(EA). The tests of the Atari and MoJoCo tasks show that the 
ES model can make up for the decreased data efficiency by 
deploying the parallel workers [17]. The experiment of the 
networked evolutionary algorithm also displays that the 
sparser communication between learning agents causes the 
higher learning rate [18]. 

In this paper, we put forward a two-stage lane-change 
decision making model. In the first stage, the ES-based 
approach is applied to learn the high-level lane change 
decision making for the automated vehicle. In the second 
stage, the low-level safety verification is performed to ensure 
safe driving. The proposed model is able to 

 learn the lane-change decision making in different 
surrounding environment by deploying the parallel 
workers and executing the evolutionary learning 
process; 

 combine the high-level learning and low-level safety 
verification to achieve efficient driving behavior 
control; 

 be extended to different traffic scenes by adjusting the 
state space, action space, reward function and the 
safety verification rule. 

The reminder of this paper is organized as follows: Section 
II introduces the definition of the problem. Section III 
presents the ES algorithm. Section IV provides the description 
of the safety verification rule. Section V depicts the algorithm 
application and simulation experiment. Section VI states the 
result and analysis. Section VII describes the conclusions.  

II. PROBLEM 

The lane-change problem is shown in a configuration 
illustrated in Figure 1. The ego vehicle in the middle lane 
senses the information of the surrounding environment and 
learns to drive efficiently. For the purpose of discussions in 
this paper, we assume that the lane change action is controlled 

by a two-stage setup, a high-level decision making and a 
low-level safety verification. At the higher level, the ego 
vehicle is trained to learn to make decisions so as to drive as 
fast as possible and minimize the disruption to the traffic flow. 
At the same time, the safety verification stage guarantees that 
the agent only chooses the safe action. 

A. State Representation 

In Figure 1, the coordinate of the vehicle i is ( , )i ix y . And 

the longitudinal velocity of vehicle i is 
iv . The vehicle j and 

vehicle k are the leading vehicle and following vehicle on the 
current lane. Vehicle m and n are the leading vehicle and 
following vehicle on the left lane. Vehicles p and q are the 
leading vehicle and following vehicle on the right lane. The 
state representation contains the relative velocity and distance 
information, which consists of 13 variables: 

 s ( , , , , , , , , , , , , )ij im ip i ij im ip ik in iq ik in iqd d d v v v v d d d v v v                (1) 

Variables ijd  and ijv  are the relative distance and velocity 

between the ego vehicle i  and the vehicle j . The values of 

ijd  and ijv  are calculated as ij i jd y y   and ij i jv v v  . The 

values of different variables are scaled in the range between -1 
and 0 before training. When there is no leading vehicle, the 
corresponding relative distance and the relative velocity are 
both assigned as -1. When there is no following vehicle, the 
corresponding relative distance and the relative velocity are 
both assigned as 1. The action of the ego vehicle is influenced 
by leading vehicles and following vehicles on the current lane 
and adjacent lanes. Thus, the state space is related to the 
information of the ego vehicle and surrounding vehicles.  

B. Action Representation 

The decision-making model focuses on whether to change 
lanes and the selection of the target lane. The ego vehicle has 
three available control actions at each time step: 

 a1, stay on the current lane 

 a2, make a lane change to the left  

 a3, make a lane change to the right 

The task is to learn to select one of the actions in the 
discrete action space. To make sure that only safe action is 
executed, the safety verification is performed before the 
discrete action is conducted.  

 
 

Fig. 1.  The surrounding environment of the ego vehicle i. 
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C. Reward Function 

  The learning goal of the ego vehicle is to drive as fast as 
possible and to minimize the disruption to the following 
vehicle at the same time. On the one hand, the surrounding 
traffic environment has an influence on the velocity. If the gap 
between the ego vehicle and the leading vehicle on the current 
lane is large enough, then the ego vehicle can accelerate to the 
desired speed and do not need to change lane. Thus, the 
reward function is affected by the difference between the 
real-time velocity and the desired velocity. On the other hand, 
the frequent tactical lane change might induce stop-and-go 
waves. Hence, the reward function is related to the 
acceleration of the following vehicle on the current lane. As (2) 

shows, the reward 
tr  reflects the goal of driving. Variable 

,i tv  

is the velocity of the ego vehicle at time instant t. 
desirev  is the 

desired velocity of the ego vehicle. 
,k ta  is the acceleration of 

the following vehicle on the current lane. 

, ,t i t desire k tr v v a                                        (2) 

III. EVOLUTION STRATEGY 

There are several evolution algorithms, including the 
Covariance Matrix Adaptation Evolution Strategy (CMAES), 
Neuro Evolution of Augmenting Topologies (NEAT) and 
Natural Evolution Strategy (NES). These algorithms differ in 
the mechanism to generate the individuals in a generation.  In 
this paper, we use the version of NES, which has been 
implemented into the RL benchmark problems by OpenAI 
[17]. As Figure 2 shows, the principle of the ES algorithm is 
injecting the noise in the parameter space rather than the 
action space like a RL-based model. As a result, ES is the 
“guess and check” on parameters. It is also possible to add 
noise in both actions and parameters to potentially combine 
the RL-based methods and ES-based methods. 

In the ES algorithm, the parameter   means the weight of 

the network. It is drawn from the distribution ( )p  , where the 

parameter   is searched to maximize the average expected 

fitness ~ ( )pE F
  .  The function ( )F   is applied to evaluate the 

variable  . In this paper, the population distribution is 

instantiated by the isotropic multivariate Gaussian distribution 
2( , )N I  . Then the expected fitness is depicted as 

~ (0, ) ( )N IE F   . The function is optimized by the stochastic 

gradient ascent method: 

~ (0, ) ~ (0, )

1
( ) { ( ) }N I N IE F E F     


                    (3) 

In the generation iteration, the sample of the population is 
drawn from (0, )N I . The parameter   is updated according to 

(4). The variable n  means the population size, and   

represents the step size. 

1

1
( )

n

i i

i

F
n

     
 

                                (4) 

The detailed algorithm is depicted in Algorithm 1. In the ES 
algorithm, workers take advantage of the shared random seeds, 
which reduces the communication cost. Besides, the mirrored 
sampling of the parameter   is executed, which reduces the  

Algorithm 1: Evolution Strategy 

Input: Learning rate  , noise standard deviation  , 

initial policy parameter  , n  individual workers with 

known random seeds 

1:  while the termination criterion is not fulfilled do 

2:        1t t   

3:        for i=1,2, …, n do 

4:            generate 
i , which is drawn from (0, )N I  

5:               evaluate the fitness function values ( )i t iF F     

6:        end 

7:        workers send the scalar values of 
iF  to each other 

8:        for i=1,2, …, n do 

9:            for j=1,2, …, n do 

10:               reconstruct the values of  j  with known            

random seeds 

11:          end 

12:          update 1

1

1 n

t t j j

j

F
n

   






    

13:      end 

14:  end 

probability of falling into the local optima and the influence of 
the outlier individuals. 

IV. SAFETY VERIFICATION 

In our proposed approach, we combine the low-level safety 
verification with the high-level action learning. The safety 
verification ensures that only safe action is performed, then 
the prior knowledge is incorporated into the model and the 
reward function is simplified. Thus, the agent is able to 
concentrate on acquiring a faster speed. The verification rules 
contain the suitable lane rule and the safe gap rule.  

A. Suitable Lane 

  This verification process guarantees that only the available 
lane is chosen, which is expressed in Table I. Variables 

1a , 
2a   

 
 

Fig. 2.  The neural network example of ES.  
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TABLE I.  FEASIBLE VALUE OF ACTION 

Action Value 1il   2il   3il   

1a  √ √ √ 

2a    √ √ 

3a  √ √   

and 
3a  are available actions. 

il  is the current lane number of 

the ego vehicle. The sign “true” means that the action can be 
executed when the ego vehicle is on the corresponding lane. 
The sign “false” is the limit of the action. For instance, if the 
ego vehicle is on the Lane 1, it will not be allowed to change 
lane to the left as there is no lane on the left side. This rule 
helps the agent to avoid driving off the road.  

B. Safe Gap between Vehicles 

The gap between the ego vehicle and its leading and 
following vehicles on the target lane should be large enough to 
keep safe. The safe gap rule is represented as (5) and (6). 

( )egox t  is the longitudinal coordinate of the ego vehicle at time 

t. Variables ( )leadingx t  and ( )followingx t  are the longitudinal 

coordinates of the leading and following vehicles on the target 

lane. The variable ( )l

safex t  is the safe distance between the ego 

vehicle and the leading vehicle. The variable ( )f

safex t   is the safe 

distance [19]  between the ego vehicle and the following 
vehicle. The ego vehicle will only choose the action which 
meets the safe gap rule. 

  ( ) ( ) ( )l

ego leading safex t x t x t                                    (5) 

   ( ) ( ) ( )f

ego following safex t x t x t                                  (6) 

Except the safe gap rule, the Gipps car-following model [20] 
is applied to avoid collisions. In the proposed model, if the 
action is verified to be unsafe with these rules, then it will not 
be executed. Thus, collisions are never allowed during the 
model training procedure, which simplifies the learning 
process. The modularized model has been demonstrated to 
behave better than the end-to-end model in the autonomous 
driving [21].  

The proposed learning model can be apllied to different 
traffic scenes. If there is another supplementary training goal, 
the training can be accomplished by adjusting the state space, 
action space, reward function and the safety verification rule. 

V. ALGORITHM APPLICATION AND EXPERIMENT 

A. Algorithm Application 

In this paper, the lane change action is executed by relying 
on the high-level decision-making and the low-level safety 
verification. As Figure 3 shows, there are totally four fully 
connected layers in the neural network architecture. And the 
numbers of neurons are 13, 350, 300 and 3 for the individual 
layer. The detailed parameter of the network is depicted in 
Table II. The thirteen features of the state are the inputs to the 
model, which capture the distance and velocity information of 
the ego vehicle, the leading vehicles and following vehicles. 
The discrete lane change choice is the output of the network. 

 

TABLE II.  PARAMETER OF THE ES ALGORITHM 

Parameter Description 

Number of input neurons 13 

Number of output neurons 3 

Number of hidden layers 2 

Number of neurons in hidden layers 350,300 

Learning rate 0.05 

Mutation rate 0.05 

Training population 160 

The low-level safety verification is performed for each action. 
The final action is assigned as the action which meets the 
safety rule and has the maximum output value. 

B. Simulation Experiment 

In order to evaluate of the proposed algorithm, simulated 
experiments are performed. The road with three lanes on the 
highway is designed, and the width of each lane is 3.75m. The 
total length of the road is 1.2 km. Except for the ego vehicle, 
there are 20 other vehicles on the road. All vehicles are 
assumed to be the same length and width. The desired 
longitudinal velocity of the ego vehicle is 19.5m/s. The 
desired longitudinal velocities of other vehicles are assigned 
as the arbitrary values in the range of 10m/s-24m/s. The initial 
velocities of all vehicles are assigned as the value between 
10m/s and the individual desired velocities. The Gipps 
car-following model is applied to keep the safe car-following 
behavior. The initial longitudinal and lateral coordinates of 
the ego vehicle are 0 and 5.625m, i.e., the initial location of 
the ego vehicle is on the starting point of the Lane 2. The 
longitudinal coordinates of other vehicles are assigned 
randomly between 0-1.2 km. And the lane number of other 
vehicles are also initialized randomly. The lane change time of 

 
 

Fig. 3.  The decision-making architecture of the proposed model. 
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the ego vehicle is defined as 3.6s. When the ego vehicle 
arrives at the end of the road, the experiment is terminated and 
repeated. As for the ES algorithm, the learning rate is set as 
0.05. As Table II shows, the population size is 160. And the 
mutation rate of each generation is 0.05. 

VI.  RESULTS AND ANALYSIS 

In model training, 5000 evolutionary generations are 
implemented. The rewards of the network during training are 
depicted in Figure 4 (a). It can be observed that the curve of 
the reward rises upward and converges to a value around -500, 
implying that the agent learns to take actions with higher 
rewards. As Figure 4 (b) shows, the average rewards of the 
parallel workers also increase with the evolution to later 
generations. The convergence trend is shown after 2000 
generations. The training results demonstrate that the 
proposed lane-change model is feasible. 

In order to test the effectiveness of the final lane-change 
model, the detailed information of the ego vehicle and other 
vehicles are analyzed in the random experiment. In Figure 
5(a), trajectories of all vehicles are shown in the 
three-dimensional space. The x, y and z coordinates represent 
the lateral positions, time and the longitudinal positions. The 
blue lines, green lines and red lines are trajectories of vehicles 
on the Lane 1, Lane 2 and Lane 3, respectively. The black line 
shows the trajectory of the ego vehicle. It can be seen that the 
ego vehicle changes lane from the Lane 2 to the Lane 1 during 
the experiment. To analyze the information of the surrounding 
environment, the longitudinal trajectories of vehicles on Lane 

2 and Lane 1 are depicted in Figure 5 (b) and Figure 5 (c). As 
Figure 5 (b) and Figure 5 (c) show, the black lines are 
trajectories of the ego vehicle on the Lane 2 and Lane1. The 
green ones and blue ones correspond to vehicle trajectories on 
Lane 2 and Lane 1 separately. It can be seen that in the first 
16.2 seconds, the ego vehicle stays on the Lane 2. When it gets 
closer and closer to the leading vehicle, it tends to find a 
bigger leading gap and changes to Lane 1. As Figure 6 shows, 
the longitudinal velocity of the ego vehicle increases during 
the first 11.6 seconds. When the ego vehicle gets closer to the 
leading vehicle, it decelerates sharply. At around the 18th 
second, the ego vehicle starts to accelerate, which corresponds 
to the complete of the lane change. Based on Figure 5 (b) and 
Figure 5 (c), it can be concluded that when the environment 
presents hinderance on the driving, the ego vehicle will 
change lane and get a better driving environment for its goal, 

 
 

(a)                                                                             (b)                                                                       (c) 

Fig. 5. Trajectories of the ego vehicle and other vehicles. (a) Trajectories of all vehicles in the three-dimensional space. (b) Longitudinal trajectories of 

vehicles on Lane 2. (c) Longitudinal trajectories of vehicles on Lane 1. 

 

                 
 

                                                                          (a)                                                                                                    (b)  

Fig. 4. Training results of the model.  (a) Rewards of the network. (b) Average rewards of parallel workers. 

 
 

Fig. 6.  The longitudinal velocity of the ego vehicle. 
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which is to achieve a higher speed and minimize the 
disruption to the following vehicle. The driving behavior of 
the ego vehicle reflects our deign of the reward. From this 
perspective, the proposed algorithm has achieved the goal of 
the proposed model and leads to the efficient driving. 

VII.  Conclusion and Discussion 

In this paper, a decision-making model for lane change 
based on a high-level evolutionary learning and a low-level 
safety verification is proposed. To our best knowledge, this is 
the first application of the ES in the research domain of 
lane-change decision making. A deep neural network 
structure is designed, and parameters are mutated and evolved 
in the proposed model. The model training results indicate 
that the agent is able to achieve a fast learning rate. Besides, 
the progression of rewards shows a convergence trend after 
1800 generations. The simulation experiment also shows that 
the lane-change behavior control ensures the ego vehicle 
achieve safe and efficient driving, which lays a foundation for 
the real-time application of the model.  

The proposed method provides an innovative way of 
solving the decision-making problem for lane change 
maneuvers of the autonomous driving. One of the topics for 
future studies will be to conduct a comparative evaluation of 
the proposed model and the RL-based model. Besides, the 
combination of ES-based model and RL-based model can be 
explored, that is, the disturbances of the action space and the 
parameter space exist together. Furthermore, the model can be 
extended to test in more complex traffic environments. For 
instance, when an ego vehicle is approaching an exit of a 
freeway, the priority of the ego vehicle to exit and its 
maneuver to the ramp should be considered. Moreover, the 
interaction between human-driven vehicles and automated 
vehicles and the prediction of human driver behavior should 
also be taken into consideration.  
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