Road Vehicle Automation: Challenges and Opportunities

Steven E. Shladover, Sc.D. California PATH Program University of California, Berkeley SBCTA, October 19, 2017

Outline

- Diverse types of vehicle automation, with very different capabilities
- Potential transportation impacts of each type of automation
- Timing for automation market introduction and growth
- Example unresolved questions
- Near-term opportunities

Diversity of Vehicle Automation

- Automated driving systems classified according to:
 - Levels of automation (division of roles between humans and system)
 - Operational Design Domain (ODD)
 - Architecture (autonomous/unconnected vs. connected)

Operational Design Domain (ODD)

- The specific conditions under which a given driving automation system is designed to function, including, ...
 - Roadway type
 - Traffic conditions and speed range
 - Geographic location (boundaries)
 - Weather and lighting conditions
 - Availability of necessary supporting infrastructure features
 - Condition of pavement markings and signage
 - (and more...)

Levels of Automation

(SAE J3016 - http://standards.sae.org/j3016_201609/)

Driving automation systems are categorized into levels based on:

- 1. Whether the driving automation system performs *either* longitudinal *or* lateral vehicle motion control
- 2. Whether the driving automation system performs *both* the longitudinal and lateral vehicle motion control simultaneously.
- 3. Whether the driving automation system also performs object and event detection and response.
- 4. Whether the driving automation system *also* performs *fallback* (recovery from failures).
- 5. Whether the driving automation system is limited by an ODD.

Example Systems at Each Automation Level

Level	Example Systems	Driver Roles	
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> function and monitor driving environment	
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist (Mercedes, Tesla, Infiniti, Volvo) Parking with external supervision	Must monitor driving environment (system nags driver to try to ensure it)	
3	Traffic Jam Pilot	May read a book, text, or web surf, but be prepared to intervene when needed	
4	Highway driving pilot Closed campus "driverless" shuttle "Driverless" valet parking in garage	May sleep, and system can revert to minimum risk condition if needed	
5	Ubiquitous automated taxi Ubiquitous car-share repositioning	No drivers needed	

No Automation and Driver Assistance (Levels 0, 1)

- Primary safety advancements likely at these levels, adding machine vigilance to driver vigilance
 - Safety warnings based on ranging sensors
 - Automation of one function facilitating driver focus on other functions
- Driving comfort and convenience from assistance systems (ACC)
- Traffic, energy, environmental benefits depend on cooperation
- Widely available on cars and trucks now

Partial Automation (Level 2) Impacts

- Probably only on limited-access highways
- Somewhat increased driving comfort and convenience (but driver still needs to be actively engaged)
- Possible safety increase, depending on effectiveness of driver engagement
 - Safety concerns if driver tunes out
- (*only* if cooperative) Increases in energy efficiency and traffic throughput
- When? Now (Mercedes, Tesla, Infiniti, Volvo...)

Intentional Mis-Uses of Level 2 Systems

Mercedes S-Class

Infiniti Q50

Let's see how well the Active Lane Control works on the new Infiniti Q50S

Conditional Automation (Level 3) Impacts

- Driving comfort and convenience increase
 - Driver can do other things while driving, so disutility of travel time is reduced
 - Limited by requirement to be able to retake control of vehicle in a few seconds when alerted
- Safety uncertain, depending on ability to retake control in emergency conditions
- (only if cooperative) Increases in efficiency and traffic throughput
- When? Audi planning first product introduction this year.

High Automation (Level 4) Impacts – General-purpose light duty vehicles

- Only usable in some places (limited access highways, maybe only in managed lanes)
- Large gain in driving comfort and convenience on available parts of trip (driver can sleep)
 - Significantly reduced value of time
- Safety improvement, based on automatic transition to minimal risk condition
- (only if cooperative) Significant increases in energy efficiency and traffic throughput from close-coupled platooning
- When? Starting 2020 2025?

High Automation (Level 4) Impacts – Special applications

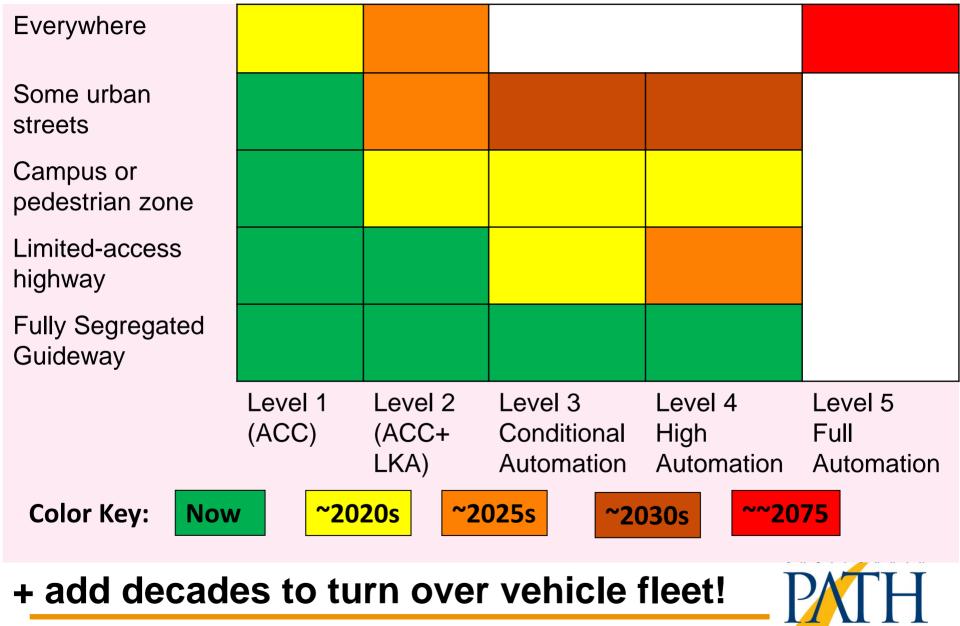
- Buses on separate transitways
 - Narrow right of way easier to fit in corridors
 - Rail-like quality of service at lower cost
- Heavy trucks on dedicated truck lanes
 - (cooperative) Platooning for energy and emission savings, higher capacity
- Automated (driverless) valet parking

More compact parking garages

- Driverless shuttles within campuses or pedestrian zones
 - Facilitating new urban designs
- When? Could be just a few years away

CALIFORNIA

Vehicle-Infrastructure Protection for L4 Shuttle Vehicle – La Rochelle, France


Full Automation (Level 5) Impacts

- Electronic taxi service for mobility-challenged travelers (young, old, impaired)
- Shared vehicle fleet repositioning (driverless)
- Driverless urban goods pickup and delivery
- Full "electronic chauffeur" service
- Ultimate comfort and convenience
 - Travel time won't discourage longer trips
- (if cooperative) Large energy efficiency and road capacity gains
- When? Many decades... (Ubiquitous operation without driver is a huge technical challenge)

Heavy Truck Automation - Platooning

- Likely early adopters of CAV technology based on strong return on investment
 - Energy cost savings as initial motivation for longhaul trucking (L1, L2 automation)
 - Changes in driving responsibilities (L3, L4)
- Significantly reducing traffic impacts of trucks
- Dedicated truck lanes could facilitate higher levels of automation by simplifying driving environment and enhancing safety (L4)
- Potential losses of truck driving jobs decades away
 - Non-driving responsibilities of drivers
 - Safety assurance challenges for automation

Personal Estimates of Market Introductions ** based on technological feasibility **

Fundamental Safety Challenge

- Current traffic safety sets a very high bar:
 - 3.4 M vehicle <u>hours</u> between fatal crashes (390 years of non-stop 24/7 driving)
 - 61,400 vehicle <u>hours</u> between injury crashes (7 years of non-stop 24/7 driving)
- Automated systems must be no less safe than this (and probably safer to gain public acceptance)
 - How to design an automated vehicle to be this safe?
 - How to demonstrate that this level of safety has been achieved?

Traffic Safety Challenges for High and Full Automation

- Extreme external conditions arising without advance warning (failure of another vehicle, dropped load, lightning,...)
- NEW CRASHES caused by automation:
 - Strange circumstances the system designer could not anticipate
 - Software bugs not exercised in testing
 - Undiagnosed faults in the vehicle
 - Catastrophic failures of vital vehicle systems (loss of electrical power...)
- Driver not available to provide fallback

CALIFORN

Why this is a super-hard problem

- Software intensive system (no technology available to verify or validate its safety under its full range of operating conditions)
- Electro-mechanical elements don't benefit from Moore's Law improvements
 - Cannot afford extensive hardware redundancy for protection from failures
- Harsh and unpredictable hazard environment
- Non-professional vehicle owners and operators cannot ensure proper maintenance and training

Much Harder than Commercial Aircraft Autopilot Automation

Measure of Difficulty – Orders of Magnitude		
Number of targets each vehicle needs to track (~10)		
Number of vehicles the region needs to monitor (~10 ⁶)		
Accuracy of range measurements needed to each target (~10 cm)		
Accuracy of speed difference measurements needed to each target (~1 m/s)	1	
Time available to respond to an emergency while cruising (~0.1 s)	2	
Acceptable cost to equip each vehicle (~\$3000)	3	
Annual production volume of automation systems (~10 ⁶)	- 4	
Sum total of orders of magnitude	10	

Main Unresolved Questions (1/2)

- How safe is "safe enough"?
- How can an AV be reliably determined to meet any specific target safety level?
- What roles should national and regional/state governments play in determining whether a specific AV is "safe enough" for public use?
- Should AVs be required to inhibit abuse and misuse by users?
- How long will it take to achieve the fundamental technological breakthroughs needed for higher levels of automation?

Main Unresolved Questions (2/2)

- How much support and cooperation do AVs need from roadway infrastructure and other vehicles?
- What should the public sector role be in providing infrastructure support?
- Are new public-private business models needed for higher levels of automation?
- How will shared—ride AVs change public transport services and VMT, energy and environmental impacts? What are the relative contributions of:
 - Automation?
 - Shared occupancy of vehicles?
 - Electric propulsion?

Opportunities for Early Wins (1/2)

- Deploy wireless communication infrastructure to support I2V/V2I cooperation at intersections, freeway interchanges
 - Collision warnings to enhance safety (L0)
 - Speed harmonization, eco-driving speed profiles and cooperative ACC to enhance traffic flow and efficiency (L1)
- Encourage use of managed lanes as testbeds and early deployment sites for connected automation systems (starting with L1 cooperative adaptive cruise control)
 - Significant traffic flow improvements as market penetration grows in those lanes

Opportunities for Early Wins (2/2)

- Heavy truck CACC and platooning to cluster trucks in high-volume corridors (L1, then L2, eventually L4)
 - Reduce traffic congestion impacts
 - Save significant energy
- Low-speed automated shuttle vehicles for niche applications (L4)
 - Closed campuses (university or industrial)
 - Retirement and resort communities
 - Commercial activity centers
 - Pedestrian malls or zones
 - Feeder services to line-haul transit

