TRUCK PLATOONING: AN EARLY APPLICATION OF COOPERATIVE VEHICLE AUTOMATION

Steven E. Shladover, Sc.D. University of California PATH Program

Truck Platooning - Overview

- What is it?
- SAE Levels of Automation
- Why V2V Cooperation is Essential
- Benefits to be gained
- Importance of energy savings
- Cooperative adaptive cruise control system
- Test trucks in action
- Energy saving results
- Main Findings

What is truck platooning?

Operating trucks in close formation under automatic speed control using V2V communication to coordinate their speeds

- Cooperative adaptive cruise control (CACC)
 - Ad-hoc combination of trucks
 - Drivers can join or depart at will
 - Constant time-gap separation
- Tightly-coupled platoon
 - First truck (or driver) supervises operations
 - Joining and departing authorized by leader
 - Constant clearance-gap (distance) separation
 - Generally enables shorter gaps

SAE Levels of Automation (standards.sae.org/j3016_201609/)

Driving automation systems are categorized into levels based on:

- 1. Whether the driving automation system performs *either* longitudinal *or* lateral vehicle motion control \rightarrow L1
- 2. Whether the driving automation system performs both longitudinal and lateral vehicle motion control \rightarrow L2+
- 3. Whether the driving automation system also performs object and event detection and recognition \rightarrow L3+
- 4. Whether the driving automation system also performs dynamic driving task fallback \rightarrow L4+
- 5. Whether the driving automation system is limited by an operational design domain (ODD) \rightarrow below L5

Example Systems at Each Automation Level

Level	Example Systems	Driver Roles	
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> function and monitor driving environment	
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist (Mercedes, Tesla, Infiniti, Volvo) Parking with external supervision	Must monitor driving environment (system nags driver to try to ensure it)	
3	Traffic Jam Pilot	May read a book, text, or web surf, but be prepared to intervene when needed	
4	Highway driving pilot "Driverless" following truck in platoon "Driverless" valet parking	May sleep, and system can revert to minimum risk condition if needed	
5	Ubiquitous automated taxi Ubiquitous automated truck	No drivers needed	ALTEORNIA PATH

Communication-Based Cooperation is Essential

- Providing advance information about traffic condition changes and hazards (including beyond sensor line of sight)
- Enabling coordination of vehicle actions for safety, smoothness and traffic flow stability
 - Implications for congestion, travel time, energy, emissions...
 - Shorter gaps for aerodynamic "drafting"
- Supporting broader traffic management functions (speed advisories, rerouting, weather alerts,...)
- Information to support eco-driving (adjusting speed profiles based on upcoming traffic signal changes)

Automotive Example: Adaptive Cruise Control with and without V2V Cooperation

Autonomous (no communication)

Cooperative (with V2V communication)

Comparison of Performance

Autonomous (no communication)

Cooperative (with V2V communication)

CALLED R N LA PATH

Benefits to be Gained at Each Automation Level (assuming use of communication for cooperation)

- Level 1:
 - Some comfort and convenience
 - Substantial energy savings (drafting and smoothing speeds)
 - Safety (from collision warnings)
- Level 2:
 - Some additional comfort and convenience
 - Additional energy savings if shorter gaps are enabled
 - (Possible reduction in safety, if misused by driver)
- Level 3:
 - Potential for driver to do other non-driving tasks
 - (Possible reduction in safety if driver loses vigilance)

CALIFORNIA

Benefits to be Gained at Each Automation Level (assuming use of communication for cooperation)

- Level 4:
 - Significant improvement in driver quality of life, stress reduction
 - Hours of service reforms based on ability for driver to sleep on part of long-haul runs
 - Possibility of driverless platoon followers, saving labor costs
 - Enhanced safety based on system fallback capability
- Level 5 (remote future):
 - No need for drivers

Importance of Heavy Truck Energy Savings

- Heavy trucks consume 20% of U.S. transportation energy
- Heavy trucks consume 14% of all U.S. petroleum
- Fuel represents 39% of long-haul heavy truck operating costs
- Annual saving of 10% in fuel costs for a typical long-haul truck represents \$6000 per year (worth \$60,000 over the life of the truck)

Development and Testing of Truck Cooperative ACC System

 Project sponsored by Federal Highway Administration, Exploratory Advanced Research Program (EARP), with cost sharing from California Department of Transportation

- Measuring energy saving potential and driver preferences for different gap settings
- Simulating impacts on traffic and energy use in a high-volume freight corridor

Cooperative Adaptive Cruise Control System

- Build on production Volvo ACC system
- Add V2V communication by 5.9 GHz DSRC
 - Vehicle location
 - Speed, acceleration, braking, commands
- Short gap settings enabled:
 - 0.6, 0.9, 1.2, 1.5 s
 - 57, 86, 114, 143 ft @ 65 mph
- Coordinated braking

Supplementary Display for Driver

Testing to Measure Energy Consumption

 International collaboration with Transport Canada and National Research Council of Canada
Transport Transports

Transport Transports Canada Canada

Environment and Climate Change Canada Environnement et Changement climatique Canada

- Testing in Blainville, Quebec on 4-mile oval track
 - SAE standard test procedure
 - 64-mile continuous drive per run
 - 3 runs repeated and averaged
 - Auxiliary fuel tanks weighed on each run

Testing Procedures

Testing at 0.6 s Time Gap in Blainville

Energy Savings Compared to Single Truck with Standard Trailer

Main Findings

- With standard trailers, trucks can save 5% energy on average in a three-truck CACC string
- With aerodynamic trailers, these savings grow to 12-14% compared to standard-trailer solo driving
- Drag savings not very sensitive to time gap values from 0.6 s to 1.5 s (57 to 143 ft. at 65 mph)
- Lead truck saves limited energy in this range of gaps.
- Third truck saves the most energy
- Effects of short gaps and aerodynamic trailers reinforce each other
- Further studies are needed for shorter and longer gaps

