

# Micro-Simulation of Truck Platooning with Cooperative Adaptive Cruise Control: Model Development and a Case Study



U.S.Department of Transportation

Federal Highway Administration

H. Ramezani, S. E. Shladover, X. Y. Lu, California PATH Program, University of California, Berkeley O. D. Altan, Federal Highway Administration

### **ABSTRACT**

- Objective: Developed a micro-simulation model of heavy truck CACC when trucks share a freeway with manually driven passenger cars.
- Car following models: Developed for CACC, ACC, and CC
- Other behavioral models: Implemented lane changing, lane change cooperation, lane use restrictions, and switch from automated mode to manual mode
- <u>Case study</u>: Calibrated Aimsun model for a 15-mile corridor
   Studied effect of penetration rate on speed and VMT

## MECHANISM OF AUTOMATIC VEHICLE FOLLOWING



### **CAR FOLLOWING MODEL**

 $a_{target}(t) = Max(b_f, Min(a_F(t), a_m(t), a_G(t)))$ 

 $b_f$ : Max braking rate

 $a_F(t)$ : Acc. rate to reach free flow speed

 $a_G(t)$ : Gipps deceleration component

 $a_m(t)$ : Acc. rate for a given driving mode. For manual mode, the Newell model is used. For automated modes the following models are used.

### Car Following Model (Cont.)

### For Cruise Control (CC) mode:

 $a_m(t+1) = 0.3907(v_{ref}(t) - v(t))$ 

 $v_{ref}(t)$ : Reference speed

v(t): Speed of the subject vehicle

#### For Adaptive CC (ACC) mode:

$$a_m(t+1) = 0.0561[d(t) - t_{des}^{ACC}v(t)] + 0.3393[v_{prec}(t) - v(t)]$$

d(t): Distance gap

 $t_{des}^{ACC}$ : Desired time gap, selected to be 2.2 sec

 $v_{prec}(t)$ : Speed of the preceding vehicle

### For Cooperative ACC (CACC) mode:

$$a_{m}(t+1) = 0.0074 \left[ d(t) - t_{des}^{CACC} v(t) \right]$$
 
$$+ 0.0805 \left[ v_{prec}(t) - v(t) - t_{des}^{CACC} a(t) \right]$$

 $t_{des}^{\mathit{CACC}}$ :Desired time gap, evenly distributed between 1.2 sec and 1.5 sec

### CASE STUDY: I-1710 NB

### 15-mile corridor with loop detector locations



#### Calibrated parameters

| Parameter                                  | Calibrated value |
|--------------------------------------------|------------------|
| Reaction time                              | 1.3 sec          |
| Gap for manual trucks                      | 2.4 sec          |
| Gap for manual cars                        | 1.25 sec         |
| Theta in Gipps model                       | $0.2^*  	au_r$   |
| Max Acc. for cars                          | $2.5  m/s^2$     |
| Max Dec. for cars                          | $3 m/s^2$        |
| Min. speed difference to consider friction | 10 m/s           |

### Effect of penetration rate (PR) on speed



### Effect of PR on VMT



### Effect of 100% PR on speed at detector locations:



### Traffic dynamic at the most congested detector:



### **CONCLUDING REMARKS**

- Developed a framework to simulate automated truck platoon, manual passenger cars and manual trucks
- Comparison of 0% penetration rate vs. 100%:

For trucks: Speed and VMT increased by 20.5 % and 7.2%, respectively For cars: Speed increased by 5.8%; marginal effect on VMT

### **ACKNOWLEDGMENT**

Work partially supported by the Federal Highway Administration (FHWA) Exploratory Advanced Research Program with Caltrans match funding (Agreement No. DTFH61-13-R-00011), and partially supported by US Department of Energy through Lawrence Berkeley National Laboratory, SMART Mobility Program (Agreement No. UCB# 13495). Any opinions, findings, and conclusions or recommendations expressed in this poster are those of the Author(s) and do not necessarily reflect the view of the Federal Highway Administration.