#### **Connected and Automated Trucks: What and When?**

Steven E. Shladover, Sc.D. California PATH Program University of California, Berkeley

International Urban Freight Conference Long Beach, October 18, 2017

#### **Overview**

- Automation 101 terminology and classifications
- PATH background on connected and automated trucks
- Truck platooning what it is and why it's important
- Levels of truck automation and when they
  may happen



#### **Automation Terminology Problems**

- Common misleading, vague to wrong terms:
  - "driverless" but generally they're not!
  - "self-driving"
  - "autonomous" 4 common usages, all different in meaning (and 3 are wrong!)
- Central issues to clarify:
  - Roles of driver and "the system" levels of automation
  - Degree of connectedness and cooperation V2V, I2V, V2I
  - Operational design domain



#### **Levels of Automation - Classifications**

*Driving automation systems* are categorized into levels based on:

- 1. Whether the driving automation system performs *either* longitudinal *or* lateral vehicle motion control.
- 2. Whether the driving automation system performs *both* longitudinal and lateral vehicle motion control simultaneously.
- 3. Whether the driving automation system *also* performs object and event detection and response.
- 4. Whether the driving automation system *also* performs fallback (fault recovery).
- 5. Whether the driving automation system can drive everywhere or is limited by an operational design domain (ODD).

### **Operational Design Domain (ODD)**

- The specific conditions under which a given driving automation system is designed to function, including:
  - Roadway type
  - Traffic conditions and speed range
  - Geographic location (boundaries)
  - Weather and lighting conditions
  - Availability of necessary supporting infrastructure features
  - Condition of pavement markings and signage
  - (and potentially more...)



#### **Example Systems at Each Automation Level**

(based on SAE J3016 - http://standards.sae.org/j3016\_201609/)

| Level | Example Systems                                                                                     | Driver Roles                                                                       |
|-------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1     | Adaptive Cruise Control OR<br>Lane Keeping Assistance                                               | Must drive <u>other</u> function and monitor driving environment                   |
| 2     | Adaptive Cruise Control AND Lane<br>Keeping Assistance                                              | Must monitor driving<br>environment (system nags                                   |
|       | Traffic Jam Assist (Mercedes, Tesla,<br>Infiniti, Volvo)                                            | driver to try to ensure it)                                                        |
|       | Parking with external supervision                                                                   |                                                                                    |
| 3     | Traffic Jam Pilot                                                                                   | May read a book, text, or web<br>surf, but be prepared to<br>intervene when needed |
| 4     | Highway driving pilot<br>Closed campus "driverless" shuttle<br>"Driverless" valet parking in garage | May sleep, and system can<br>revert to minimum risk<br>condition if needed         |
| 5     | Ubiquitous automated taxi<br>Ubiquitous car-share repositioning                                     | Can operate anywhere with no drivers needed                                        |

#### **Early PATH Research on CAV Trucks**

### Automatic steering control – 1998-2000



#### Two-truck platoon control – 2003





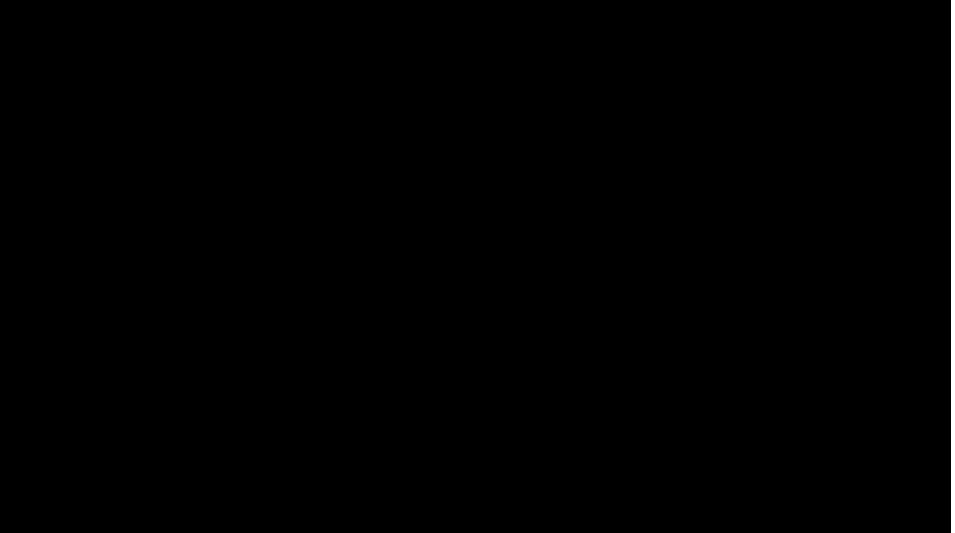
#### Why care about truck platooning?

- Significant energy savings from aerodynamic drafting
- More stable vehicle following dynamics, reducing traffic flow disturbances and saving additional energy and emissions
- Increased highway capacity and reduced congestion from improved traffic dynamics and shorter gaps
- (Potential) safety improvement
- (When Level 3 automation becomes feasible) Improvement in truck driving working conditions, with more diverse assignments for drivers on the road
- (When Level 4 automation of follower trucks becomes feasible) Reduced need for truck drivers on line haul



#### **Enablers of Truck Platooning**

- Adaptive cruise control (forward ranging sensor, plus engine, braking and transmission control) already available
- Fast, highly reliable V2V communication
- Informative driver-vehicle interface
- Reliable early detection of cut-in vehicles
- (For L2+) Lane position detection and automatic steering control
- (For L3+) Central supervision, I2V comm.
- (For L4) Extensive safety assurance + dedicated, segregated truck lanes (?)




#### L1 Truck Platooning State of the Art

**Automated longitudinal control only** 

- Cooperative ACC as first step (pre-platoon)
  - V2V communication/coordination
  - Ad-hoc joining and leaving
  - Constant time-gap following
- L1 Platooning
  - Add coordination/supervision by leader
  - Extend to constant clearance distance gap and shorter distances
- Many research and development projects
- Peloton Technology planning 2-truck product release
- Major truck manufacturers considering it seriously.
   but no announcements yet

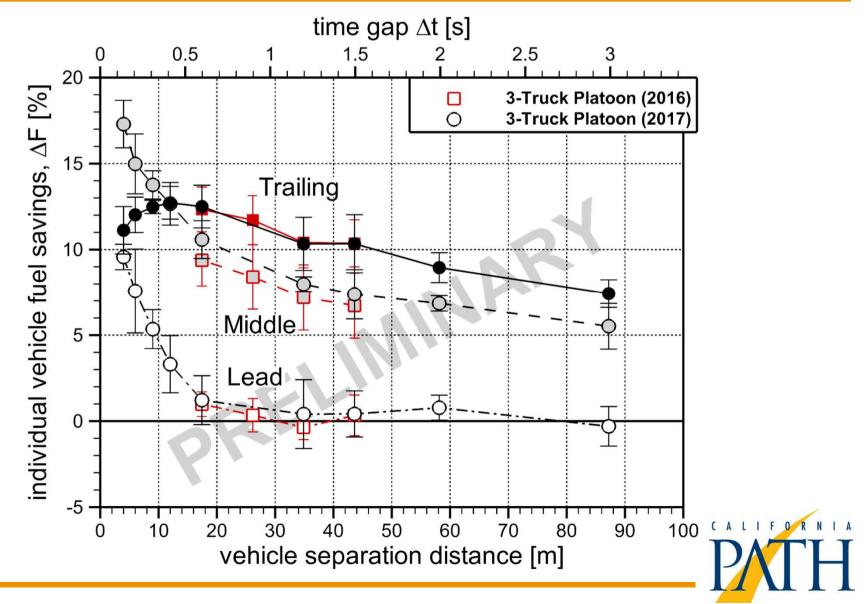
#### PATH/Volvo Truck CACC at 0.6 s Gap on Transport Canada's Test Track (10/16)



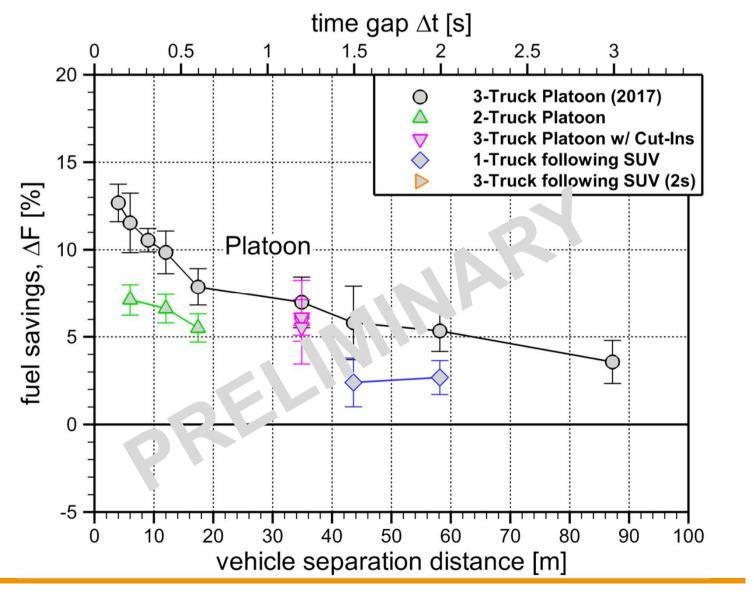


#### PATH/Volvo Truck Platoon at 4 m Gap on Transport Canada's Test Track (8/17)





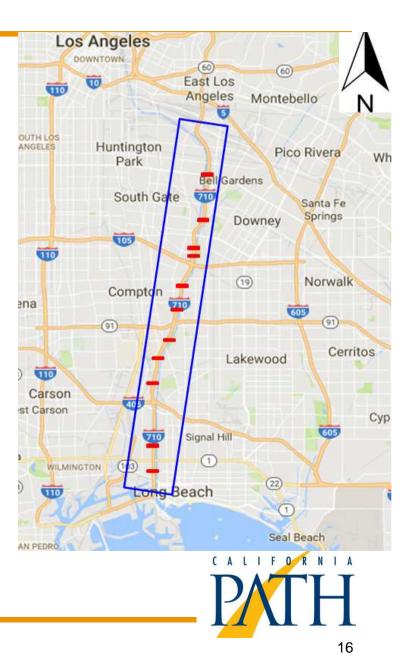

#### PATH/Volvo Truck CACC, Including Response to Cut-in Vehicle






# Fuel Savings per Truck at 110 km/h (65 mph)




## Fuel Savings for Complete Platoon (Average) at 110 km/h (65 mph)





#### **Traffic Impact Study for I-710 Corridor**

- 15 miles, 21 on-ramps, 20 offramps
- 10% 19% truck volume
- Morning off-peak (10-11 am) simulated northbound
- If all trucks can use CACC for close following:
  - Truck average speed +19%
  - Truck flows +2% -- +8%
  - LDV traffic unaffected
  - Trucks save ~2.5% of fuel (2% from traffic flow, 0.5% from aerodynamics)



#### L2 Truck Platooning State of the Art

L1 platooning + automatic steering control

- Automatic steering likely necessary for shorter longitudinal gaps (visibility limitations)
- Multiple research projects have tested it, from CHAUFFEUR (1996-2004) to Konvoi, SARTRE, Energy ITS, etc.
- Some companies doing R&D on it (Daimler, Scania, Uber ATG, Waymo,...)
- Product releases?? Within a few years



#### L3 Truck Platooning State of the Art

L2 + driver can divert attention *temporarily* to other tasks, while remaining available to intervene when needed

- Follower truck driver could work as sales person or logistics manager *en route*
- Research needed on driver-vehicle interface to try
  to ensure driver availability when needed
- Remote supervision (by lead driver over V2V or central supervisor over I2V link) could be needed
- Passenger car applications likely to precede heavy trucks
- Product releases? ~5 years?



#### L4 Truck Platooning State of the Art

L3 + ability to ensure minimal risk condition without any human intervention (while operating within its specified Operational Design Domain – ODD)

- L4 platoon followers likely to be coupled behind a leader driven at L0, L1 or L2.
- Singapore requesting this now for a 10 km route connecting two container terminals
- Safety assurance state of the art not sufficient to support this level of automation for mixed traffic and highway-speed operations
- Likely to need segregated truck-only lanes or other special restrictions to simplify the ODD – like current port and mine applications

#### **Potential Loss of Truck Driver Jobs?**

- Starting from current shortage of drivers and aging driver population
- Any current truck driver will be able to retire, not go on unemployment
- Elimination of driver roles will take decades:
  - Safety assurance en route
  - Condition monitoring
  - Loading and unloading, load securement
  - Interfaces with shippers and receivers (pickup and delivery)
  - Managing the unexpected
- Add fleet turnover time

