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EXECUTIVE SUMMARY

This final technical report documents technical developments conducted under the
Integrated Collision Warning System Program (ICWS). It is a continuation of the
development programs for the individual frontal and side collision warning systems for
transit buses. The goal of the ICWS program is to integrate the advancebanoinséde
collision warning systems into a unified collision warning system. A singieeDr

Vehicle Interface (DVI) is being developed that can effectively dispiayings from

both frontal and side collision warning systems and signal the driver in a mannsr that

effective in helping the driver avoid crashes.

Vehicle collisions have been a significant concern for transitabpe: They not only
result in property damage, service interruptions and personal injbuesalso affect
transit efficiency, revenue and public perception. In addition to aoilislamage,
passenger falls resulting from emergency maneuvers also btatrio an increased
potential for passenger injuries and liability. A transit collision rigpheough the agency
and consumes additional resources to settle claims and resugsifitant loss of good
will. Transit operators and industry stakeholders actively seek i@mutto avoid
collisions and have recommended that studies be conducted under the US DOT
Intelligent Vehicle Initiative (IVI) to develop transit calon warning technologies. The
primary goal of the Transit IVl program is to develop techniaat performance
specifications for collision warning systems which can idgnhfzards that may
potentially lead to collisions in complex urban environments and warnverdri
accordingly. Based on the recommendations, Federal Transit Athatiiois initiated the
Transit IVI Program in 2000. As part of the Transit IVl Pragyaubstantial efforts were
carried out to develop frontal and side collision warning systaaiscan deal with the

urban driving environment.

The research efforts on Frontal Collision Warning Systems (FPCMé& carried out by
the San Mateo County Transit District (SamTrans), UniversityCalifornia PATH



Program (PATH), California Department of Transportation (@aff), and Gillig
Corporation. Most of the San Francisco Bay Area transit ageax@gsarticipating in the
project in an advisory role and have provided significant inputs to thecprojee team
conducted in-depth study of accident data for 35 transit agenciesedineobtained a
better understanding of the causes of transit frontal collisiodghe conditions in which
crashes may potentially occur through field testing and data collection usingnested
buses. Human factors researchers also closely interacted witiir&ns drivers to
understand their needs and expectations. Based on the accident dgds amal field
data collection, the FCWS team developed sensing schemes, olusteddon and
collision warning algorithms and a DVI design. Prototype collision warryatgss were
instrumented onto three Samtrans buses that include radar andeldarss obstacle
detection and collision warning algorithms, and a DVI. These prad®&pWS systems
address imminent crashes and warning needs for smoother maneudaritige final
product, preliminary requirement specifications were developed andiregpéally
verified through field testing using the three buses equipped Retiprbtotype warning
system.

The research efforts on Side Collision Warning Systems (SGVER) carried out by the
Port Authority of Allegheny County (PAT), Carnegie Mellon UniversRobotics
Institute (CMU-RI), the Pennsylvania Department of Transportaand Clever Devices.
Similar to the research on FCWS, the side collision waramthas collected field data
to study the hazards on both side of the bus while the bus is in motidraa developed
approaches for tracking the movement of vehicles and pedestrianssoammgng laser
rangefinders mounted on the sides of the bus. While vehicle colbksioidance is an
important goal of SCWS, much of the emphasis of this study isclagen pedestrian
detection by assessing the movement of pedestrians relatitre sidewalk. A prototype
side collision warning system was first installed on avehicle platform and later on a
PAT bus for field experiments. Based on the test results, pnaisnirequirement
specifications for an SCWS were developed.

Based on the foundation of the frontal and side collision warning systems, the FOWS a

SCWS teams joined efforts to improve the collision warning algorithms. Thetigbjet



the ICWS Program was to study how frontal and side collision warning systdrm mig
interface with each other, and to develop prototype ICWS systems on two buses, one at
Samtrans and the other at PAT. The prototype ICWS buses have been in revenue
operation in the Bay Area and Pittsburgh to collect field operational data and'driver

responses. Evaluation and performance analysis are still being conducted.
This report mainly describes the following:
(1) ICWS introduction and overview.

As a driver assistance system, the primary goal of the IG&® predict imminent
potential crashes, or collisions with objects so that it cam wee transit operator when
necessary. To achieve this goal, first of all, the systerdsneebe capable of gathering
information from both the subject vehicle and the surrounding environmearis{i bus

and object sensing and detection), it then needs to track the objects (around both front and
side), predicts their trajectories and assesses the Ha®sad on all knowledge available,
finally, it needs to be able to issue warnings to the operatorheiaDtiver Vehicle
Interface. These functions are implemented by the systenwhiad software and

algorithms.
(2) ICWS hardware, software and algorithm.

The ICWS hardware includes power adaptors, host-bus sensors, ohpscirsse
engineering computers, cameras, video recorders and DVI. Hostiem's measure bus
speed, accelerations, yaw rate, brake pressure, throttle positnatshield wiper status,
back up light, turn signals, GPS location, etc. Object sensors incluttalfLidars, two
additional Radar sensors used as alternative sensors in harshrwaatheurb detector
and two side laser scanners. Three PC104 engineering computasedifer ICWS data
acquisition, archiving and warning algorithm generation. Reconders developed to
save the video streams from cameras that are installed to pobifetent views around
the bus. These recorders are part of the research system and are saryéwethe final
system. The FCWS is connected with the SCWS using serial pbessystem hardware

provides the platform for system software and application algorithms.



The ICWS computers are running QNX (FCWS) and Linux (SCWShao#gh the
specific implementations are different, a “single-writer tiplé-reader” model is used as
the basic protocol for inter-process communications in the systéimware. The FCWS
exchanges data with the SCWS via a custom-built protocol. Built sgygtem hardware

and software are the ICWS application algorithms.

The ICWS algorithms include system modeling, object tracking threat assessment,

system fault detection and recovery.

The biggest challenge for the FCWS is that buses usually serueban/suburban
environment where too many objects may trigger false alarms.eHens a difficult
problem to detect real imminent crashes and give drivers timagnings while
suppressing excessive false alarms. The third generation lahgd?inTH developed for
forward collision warning has five unique features (1) Modeling movangets with
non-holonomic constraints. (2) Taking into account the driver’s rotbarsystem. (3)
Eliminating Coriolis effect. (4) Suppressing finite size objeitect. (5) Using required
deceleration as threat measure. All these features adddessgethe nuisance alarms to

a great extent as shown in the data analysis and field testing.

The SCWS uses the linear feature tracker combined with hisé@gdbtrack validation
and is able to generate reasonably accurate velocity estimatessfand pedestrians in a
cluttered urban environment, while giving a low rate of spurious matiioations that
can cause false alarms. The estimation of acceleration andatarappears to improve

prediction of future positions.

The ICWS has four categories of fault from the system pointe®f: power fault, sensor
fault, DVI fault, and engineering computer fault. The practicalt fdetection algorithms
and detection strategies are proposed and system fault reportirgystath recovery

methods are introduced.

(3) DVI development.



The DVI for the ICWS was an extension of the UC Berkeley PAXkperience over the
previous two years on transit bus operation. The design of the DVI itdok
consideration the characteristics of the bus design and special foeeédssit drivers.
Many discussions with and feedback by Foster Miller, Inc anohlmees of the transit
community (SamTrans, PATH and a dozen of transit agencies irathAiga) were also
used for the current design. The current design of the DVI witMaduated in simulation
by PATH and SamTrans as part of this program and evaluatedrsjt operators. These
results will be incorporated into the final performance specifications ftif\MS.

(4) ICWS field testing, data analysis and system evaluation.

The prototype system has undergone detailed testing and analgsigat®in tools and
playback tools for ICWS were developed to analyze the raw, dat well as test and
evaluate the system. The simulation tools regenerate ainietiate variables and trace
back each detail of the processing performed. Playback toolsadeto show the video
files together with all engineering data so that we can haveomprehensive

understanding of the scenarios.

Series of tests were conducted at both RFS and Crows Landiegttthé FCWS. A
leading vehicle and a bus were the main focuses of the testingthAwheel, an
accelerometer and a string pot were installed on the leadimglereand synchronized
with the FCWS. A string connected to the bus was used to measulistdrece between
the leading vehicle and the bus. The leading vehicle ran at laliv/imespeed with the
bus following it at a reasonably safe distance. The estimativom (the FCWS
algorithm) of the essential variables: relative positions, target speetegldration were
compared with the raw measurement from the Lidar, the strihgr(vapplicable), the
fifth wheel or the accelerometer on the leading vehicle. €kaltris a good match as

shown later in this document.
The FCWS warning scenarios were categorized and analyzed asitigee-step

guantitative approach. The three scenarios include: moving/stopped dtuepd on

straight road; stationary target roadside on curved road; overbbsathcles on

Vi



declining/flat road are analyzed. Improvements were made talgjogithm to include
features that turn the nuisance warning to a friendly remindgh ¥e road geometry
information (e.g., more precise GPS and digital map system) cii&ts information,
target properties and crash data analysis, some of the nuisatheesd by curved roads

and overhead obstacle problems could be overcome.

Bench tests were also conducted for the SCWS system to Veefyesolution, the
accuracy of the object sensors and the accuracy of velocitiesuradaby DATMO.
Closed Course testing was conducted to verify the warning algeritlyntonstructing
situations in which cardboard objects came in contact with the busrifg thee true

positives and look at the relative timing of the incident prediction and DVI activati

The majority of the positive alarms SCWS issues are undesdilndby the transit
operator. Many of the false positives are not very seriouslg {alslocity off slightly),
and the driver might not even consider them nuisances. When aala@ent of false
positives are seen by the operator, the problem can be traced Isatlsto failures (e.g.
laser scanner not level due to the bus tilting or road variation akohgiap ground
returns). The number of serious false positives which will be preset if all the

sensors work correctly is small and due primarily to velocity outliers.
(5) Transit CWS Simulator.

The SamTrans FAAT simulator is being modified to incorporate CWS functions,
which will allow us to create specific scenarios of intgr@scluding scenarios too
dangerous to test on real buses, to which large numbers of drivelse caxposed,
providing us with a much more extensive data set than we could oldainrfrservice
operation of two buses. From the simulator experiments, more extelasa/sets will be
obtained, which will be used to analyze driver behavior changes due itartriction

of ICWS and for further optimization of the warning algorithms and DVI.

(6) ICWS commercialization and further research recommendations.

Vii



As more advanced sensors and more powerful computers are avadgelbet with
further integration of the FCWS and the SCWS, the ICWS will Haweer sensors
needed to maintain the same or even higher sensing capabilitycrespall functions
using only one computer, resulting in smaller volume and less cose Mseearch is
being conducted to improve the ICWS tracking algorithm and threassasent
algorithm. Research on use of GPS/Digital map and sensor daba fudl also be

introduced to help ICWS performance improve.
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1 INTRODUCTION

1.1. Background
The Federal Transit Administration has been funding work ovetastefive years to

shorten the commercialization and deployment cycle of collisioningusystems for the
transit industry. FTA developed initial cooperative agreements veth Nsateo Transit
Authority (Samtrans), California Department of Transportatiorit{&@e), University of
California at Berkeley PATH Program (PATH) and Gillig Coopiera to develop
Frontal Collision Warning Systems (FCWS), and with Port AuthooityAllegheny
County (PAT), Pennsylvania Department of Transportation (PennDOdmeGie
Mellon University Robotics Institute (CMU RI) to develop Side IS@n Warning
System (SCWS) and with Ann Arbor Transit Authority and Veridian ifgeying
Division to develop Rear Collision Warning Systems (RCW). The fofukese efforts
was to fund technology development to the point where a commerciahsgsuld be
developed. In addition, existing Side Object Detection systems uglingsonic
automotive sensors were put into operational field tests to learn tbomtroduce
technology onto a transit platform in a way that made it acoleptto operators,
maintenance personnel and management. Initial results of this veosekam advance in
the technology usable for collision warning systems, specificafiwrazlvanced collision
warning systems, and the evaluation of 100 commercially avaitaié object detection

systems in revenue operation.

The next step in this program was to determine what it wouldttakeld an integrated
advanced frontal and side collision warning system and conduct a mdws=llfield test

on ten commercial systems. The objectives for this work were as follows:

1. Develop a Functional ICWS
2. Create System Acceptable to Operators
3. Prove Technical Feasibility Through Field Test of Prototype System



4. Demonstrate a Potential for Reduction in the Severity and Frequehcy

Collisions

In 2002, FTA entered into cooperative agreements with a consortigirmthaded San
Mateo Transit Authority (Samtrans), Port Authority of Alleghe@punty (PAT),
California Department of Transportation (Caltrans), Pennsylvangpaiment of
Transportation (PennDOT), University of California PATH Progrand the Carnegie
Mellon University Robotics Institute. Prototype hardware desigdsatégorithm research
were focused early in the project to field an advanced Integraté8. his report
documents the results of this research prior to the evaluatithre girototype advanced

ICWS. The final evaluation report for this Integrated CWS will be produced in June 2005

1.2. Scope
As detailed in the Preliminary ICWS Performance Speciboati the primary goal of an

integrated collision warning system is to predict imminent pitectashes, or collisions
with objects and warn the transit operator. To achieve this goatahsion warning
system has the sensing capability to gather information fromthetsubject vehicle and
the surrounding environment (Transit bus and object sensing) and displaythie
operator via the Driver Vehicle Interface. The ICWS fulfilight functions as illustrated
in Figure 1, including object sensing, transit bus sensing, the basial and data
processing functions shown within the dotted lines and the Driverciehiterface
(DVI). At the beginning of this program, these functions were exathito see what

research needed to be done to accelerate the deployment of commercia.system
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Figure 1 - Basic ICWS Algorithms

1.2.1 Transit bus and object sensing

Subject vehicle status sensing refers to the acquisition of infiomman operator actions
and the current kinematic states of the bus. Examples of subjectevstatus sensors
are. speedometers, accelerometers, brake pressure sensary} stegle sensors, and
GPS receivers. Commercial sensors exist in this area andheatlyto be specified and
incorporated into a commercial system. The goal of this prograsrtovdetermine what

sensor information is necessary and should be defined in the ICWS Specifications.

Object sensing refers to the acquisition of information from eéhgironment (for
example, road curvature), the presence of other objects (for exawghlieles and
pedestrians) and the current kinematic states of the objectmplesaof sensors for
object status sensing are microwave RADARS, laser LIDARsging sensors and
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ultrasonic sensors. The sensors used in this early prototype IC¥VS the more
expensive and higher performance ones in order to determine whepertbemance
level should be set for a commercial system. The developmentloéaper sensor for a
commercially viable system is discussed more fully in the RecommendSgatisn.

1.2.2 ICWS Algorithms - Signal and data processing

The main research component of this program involved developing thethaigori
necessary to process the incoming data and generate warniag$raosit operator.

Research was accomplished in each of the five algorithm areas defined below.

The function of object detection and tracking is to tell if theran object within the
monitoring coverage of the collision warning system. The statéhe art in object
tracking was not sufficient to develop ICWS systems that coutdrately and in a
timely fashion present objects to be tracked. The conversion afrsggis to object data
represented a large challenge to developing these systems aiiitasig effort was

devoted to this cause.

The function of object trajectory estimation is to determine tresgmt and future
kinematic states of an object. The states included such informegicpatial position,
velocity and acceleration of an object. The algorithms for pliedi¢he trajectory are
straightforward and did not need to be researched, but the importance of eachabéshe st
for the warning algorithms were examined and the results incéggoirathe current set

of ICWS Specifications.

The function of bus trajectory estimation is to determine the mpreaad future
kinematical states of the transit bus. The states included sfmtmation as spatial
position, velocity and acceleration of the bus. Once again, the algsrfthrnpredicting
the trajectory are straightforward and did not need to be reselatolt the importance of
each of the states for the warning algorithms was examimé&dh& results incorporated

in the current set of ICWS Specifications.
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The function of threat assessment is to determine the likelihoodllisian between the
transit bus and an object by assessing such factors as the probabilibllisi@¢time to
collision and the likely severity of a collision. These factarsnf the basic data used in
the warning algorithms. As such, they were a primary partefésearch and used as

metrics in the evaluation phase of this program.

The warning algorithms determine the safety level of thesit bus and its environment
based on the threat assessment. One important aspect of the \aégartgms is to use
heuristics based on threat assessment, object location and tinmmgiitaze the number
of nuisance alarms. A framework for these heuristics was @gs@lwhich allows future
heuristics to further tune the system based on data obtained duringeeezvice during
the evaluation part of this program.

1.2.3 Driver-vehicle interface (DVI)
The DVI is a critical component of the ICWS, which displaysahiputs of the ICWS to

the operator for appropriate corrective action. These signalprasented via displays
whose modalities include visual and the capability for auditory. Aectfye DVI must
be able to bring the driver’s attention to the hazardous situatide twishe performs a
variety of driving and non-driving tasks and does not pose additional workload
distraction. The DVI for the ICWS was an extension of the UCk&ey PATH
experience over the previous two years on transit bus operation. Tige dethe DVI
took into consideration the characteristics of the bus design and|spsmils for transit
drivers. Many discussions with and feedback by Foster Millerafitt members of the
transit community (SamTrans, PATH and a dozen of transit ageircidne Bay Area)
were also used for the current design. The current design oMheilDbe evaluated in
simulation by PATH and SamTrans as part of this program andiagedl by transit
operators. These results will be incorporated into the final perfarenspecifications for
an ICWS. A more thorough discussion of the DVI in Section 7 of tipisrteitled DVI

Development.
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1.3. Organization of Content
This report documents the research undertaken as part of thisamrdgy two

universities, with each one describing their respective partsec$ytstem. As such each
major section is structured to discuss fully either the side compohéhat section or the
frontal component. Care has been taken to title the subsectionsesitifito show this
distinction so as not to confuse the reader. This document is divided as follows:

1 Introduction (Background, Scope, and Organization of Content)

N

Integrated Collision Warning System (System Description and Iheelgra
ICWS)

System Overview

Hardware Development

System Software

Algorithm Development

DVI Development

Data Analysis and Evaluation

© 00 N o o1 b~ W

Calibration and Testing

10 Transit CWS Simulator

11 Recommendations
Appendix A:  Acronym Definitions
Appendix B: Related Documents
Appendix C: Published Papers
Appendix D: Conversion Tables

1-14



2

INTEGRATED COLLISION WARNING SYSTEM

2.1. System Description
The integrated collision warning system is functionally dividetd FCWS and SCWS

processors dealing with frontal and side collision detection aadhimg signal

generation. This modularity makes it easier to specify andrateeg rear collision

warning system in the future for 360 degree situational awasenThe warning

information is presented to the transit operators through an intédbaieer Vehicle

Interface. Additionally, data collected through each processdnaiged with the other

processor and stored for easier data analysis. The elements of tBarClde:

Vehicle state estimation and bus signals interface — this irgltrgee common
infrastructure that each collision warning system needs suchhadevposition,
speed, heading, door open/close, turn signals, etc.

Frontal collision processor —Includes sensors for detecting frobtthcles and
vehicle status information for determining risk levels and for géingravarning
outputs to integrated DVI. Appropriate sensory information is exchangkdhe
side collision processors.

Left and Right Side collision Processors - Includes sensors fectuwy side
obstacles and vehicle status information for determining risk lemets for
generating warning outputs to the integrated DVI. Appropriateas@y
information is exchanged with the frontal collision detection processor.
Integrated DVI — to display the warning to the operator

Data storage — Stores video and digital data for later analydigvaluation. The
data collected by both frontal and side collision detection systeenstored with

time synchronized data formats for post processing analysis.

A top level overview showing the general configuration of the ICW&aamore detailed

hardware / architectural layout are shown in the next two figures.
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Figure 3 System Architecture
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2.2. Integrated ICWS
What do we mean by an “integrated” ICWS? This question would figtoczur as you

look at the functional configuration figure above, since it appearsetet of these
systems is operating independently. The overarching design philosophiyisfagarly
prototype combining the FCWS and SCWS was that the frontal andceltigion
warning systems should be closely integrated through informatieygration. In
implementing the hardware, we wanted to ensure that each systerperate even if the
others go down. With separate computing systems this dictd¢eeleof independence
that does not need to be reflected in the end commercial produst.intagrated
prototype is integrated at the information level primarily tiglothe RS232 interface and
the time synchronization of data streams to allow integrated pastessing data

analysis.

A visual integration occurs though the common Driver Vehicle Interéaw the Driver
Interface control box. This display to the operator integrates #nrings by displaying
them on a single set of DVI's. Lastly, a common coordinate sybi@s been defined to

allow the meaningful passage of data between the FCWS and SCWS systems.
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Figure 4 Three stages towards a commercial product

As shown in the above figure, this early prototype of an ICWS allogvto test the
concepts and develop an integrated set of performance specificiaticasommercial
prototype of an ICWS. Offline data analysis will show additideakls of integration
potential by revealing the benefit of real time informaticansfer between systems.
Human factors testing will determine if a transit operator assimilate the current DVI
information. This familiarity and experience with the combined esgst will show

additional areas for further integrated specifications.

Once these integrated specifications are released, therstilhrevo stages left to
developing the final commercial ICWS. The first is the init@ienercial prototype and
the second is the commercial product itself. The commercial ppetatill involve the

integration of hardware subsystems, elimination of redundant componentserfaces,

common software modules and overlapping sensors. This additional staep bed

development of a final commercial product is necessary in ocdg@rdvide for the

integration of the forward and side collision algorithms usilegramon algorithm base.
This is discussed more fully in the Recommendations Section of this report.
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2.3. Sensing Needs

The farthest detectable range in the same lane is 100m (330ftklddest detectable
range in the same lane is no greater than 3m (10ft). Themmuaxidetectable side-
looking angle from the front bus corners is 30 degrees. The detelctizobd position for
the forward sensors is over 6m (20ft). The side looking sensorslogkly track objects

that are within 3m of the bus however, objects will be detected as far as 50 weaters a

6m
im
6m
/ﬁo«j
-|
WS BUS '
2m
3m
“3m’
> : Uncovered Area
» 100Mm «———

Figure 5 Integrated system spatial coverage illusaition
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3 SYSTEM OVERVIEW

3.1. FCWS System Overview

3.1.1 The goals of the FCWS
The goalsof the transit Frontal Collision Warning System (FCWS) underctmext of

this project include:
1. Address imminent crashes.
2. Provide warnings for smoother maneuvering.

3. Provide warnings when a bus is too close to a forward vehicle.

3.1.2 FCWS functions

The operation environment for ICWS is significantly different friti@ environment that
automobile CWS deals with in the following two ways. First, mogheftransit frontal
crashes occurred in urban areas while previous studies on collisiaing and collision
avoidance have mostly focused on highway applications, freight truckdigatduty
passenger cars. The urban environment presents considerablegesallgtn respect to
the diversity of obstacles to be detected and different traffiterns. The transit FCWS
must be able to deal with the complex urban environment besides theabrairtrent
commercial CWS address. Second, transit bus drivers are proféssionexperienced
drivers who may have different needs for a FCWS. Transit drivave also expressed
concern regarding the presentation of warnings that can be gepasbengers. Bus
passengers might find warnings for advance cues of potentiatdhebe annoying and
potentially alarming. There is still a great need for hurfectors research in FCWS

within the transit environment.

Despite the differences between the collision warning apgitstihe FCWS for transit
buses requires the same functional elements that are requirethéry CWS. The
principal functional element of a CWS is sensing and detection sémee of hazardous
objects. Furthermore, this function must be able to match the complean

environment. The second functional element is warning generationodegses the

sensor information to “detect” the targets that may potentimlylangerous to the bus,
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then determines the threat level and generates warningseas@nable good timing if
necessary. The third functional element is the Driver Vehiaterface (DVI) which

issues the warning message to the driver. The figure below slgpiet functional

description of the collision warning system:

Environment

_| Generating _| Displaying

Bus Sensin : > i
9 warnings warnings

\J

Bus driver =

Figure 6 Functions of frontal collision warning sysem

The figure below shows the architecture of the FCWS system PATH developed:

N . ..
N ommnuniation
Power N N with the SCWS
4 N
. N
Hardware drivers AN
Obstacle N ~
sensors System software N
N
N
N
FCWS AN
Host-bus Engineering computer FCWS video
Application software:
SENSOIS Warning algorithms recorder
Fault detection
J-Bus Quad
data combiner

Four cameras
Driver and a titler
el DVI control input

Figure 7 FCWS system architecture
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3.1.3 FCWS system hardware

The FCWS system hardware consists of power and adapters, ti0d BG@mputers (one
is an engineering computer and the other is a video recorderprsdimxluding five

obstacle sensors, and host-bus sensors) and cameras (frontal |@vkerg,cdriver-side
looking camera, passenger-side looking camera and interior lookimgrap and human

machine interface (including a driver control box and two DVI bars).

The engineering data, which mainly includes the obstacle seatoradd the host bus
sensor data, is recorded and processed by an engineering comlpigters a PC104
computer running QNX operating system. The obstacle sensordeseley PATH to
capture the environment around the bus include commercially availam®-pulse
millimeter-wave RADARs and scanning infrared lasers. BottRABAR and scanning
laser measure distance and azimuth angle of multiple targéte. RADAR units are
mounted on the front bumper, one on each end, pointing forward. The Denso ULH}AR
is mounted near the center of the bumper, pointing forward. Host bssrsaneasure
the bus status, including bus speed, accelerations, yaw rate, braker@rehrottle
position, windshield wiper status, back up light, turn signals. Gt@esors include a
GPS system and a driver control box, which controls the brightngke @fVI bars and

the system sensitivity level.

Video streams from four cameras are combined together wilkraby a quad combiner
and recorded by another PC104 video-recording computer running QNX 6s It i

synchronized with the engineering computer in real time through RS232 serial ports

The FCWS and the SCWS communicate with each other through RS23pcdsaThe

two systems exchange information that the other party may need.

3.1.4 FCWS system algorithms
The prototype FCWS algorithm was developed based on the data fusiaheaision

making model developed by the Joint Directors of Laboratories)(diata fusion sub-

panel.
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3.1.4.1 The JDL data fusion process model

The JDL data fusion model provides a top-level framework of datarfusistems, and

defines terms commonly used in different areas. The top levéleodDL data fusion

process model is shown in the figure below:

ﬂta Fusion Domain

Level 1 Level 2 Level 3
Source Object Situation Threat
Preprocessing Refinement Refinement Refinement

Source [«

Level 4

Process
Refinement

> HMI

Database Management System

Support Fusion
Database Database

=

The JDL model is a generic model for common understanding and discusdas.

Figure 8 JDL data fusion process model

defined levels of processes to identify functions and techniques. Thd hasdbuilt a

common base for researchers and system developers working rerditieeas. With the
help of this model, we can adopt a lot of approaches and techniques devetoptber

applications, such as robotics, Computer Integrated Manufacturingn®/gCIMS),

airport surveillance and air traffic control, to develop a CWS.

SOURCE

The sources provide information at a variety oklewanging from sensg

data toa priori information from databases to human input.

=

PROCESS ASSIGNMENT

Source preprocessing enables the data fusion gréce®ncentrate on th
data most pertinent to the current situation ad alreducing the dat
fusion processing load. This is accomplished vita gae-screening an
allocating data to appropriate processes.

o O o

OBJECT REFINEMENT
(Level 1)

Level 1 processing combines locational, parameténd identity
information to achieve representatives of individohjects. Four key
functions are:

* Transform data to a consistent reference frameuaitd
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« Estimate or predict object position, kinematicsattributes
» Assign data to objects to permit statistical estioma

» Refine estimates of the objects identity or clésaifon

SITUATION REFINEMENT
(Level 2)

Level 2 processing attempts to develop a contextestription of the
relationship between objects and observed eventds Processing
determines the meaning of a collection of entit@sd incorporateg
environmental informatiorg priori knowledge, and observations.

THREAT REFINEMENT
(Level 3)

Level 3 processing projects the current situatimo ithe future to draw
inferences about the enemy threats, friendly amangrvulnerabilities, ang
opportunities for operations. Threat refinementegpecially difficult
because it deals not only with computing possiloigagement outcomes,
but also assessing an enemy’s intent based on &dgelabout enemy
doctrine, level of training, political environmemid the current situation.

PROCESS REFINEMENT
(Level 4)

Level 4 processing is a meta-process, i.e., a psocencerned with other

processes. The three key level 4 functions are:

* Monitor the real-time and long-term data fusionfpenance

« Identify information required to improve the mukivel data fusion
product, and

« Allocate and direct sensor and sources to achiéssion goals.

DATABASE
MANAGEMENT
SYSTEM

Database management is the most extensive andillacgion required tg

support data fusion due to the variety and amofintamaged data, as wel
as the need for data retrieval, storage, archivimgapression, relational

queries, and data protection.

HUMAN-COMPUTER
INTERACTION

In addition to providing a mechanism for human ingaid communication
of data fusion results to operators and users, Hiaenan-Compute
Interaction (HCI) includes methods of directing lamattention as well as
augmenting cognition, e.g., overcoming the huméircdity in processing

negative information.

Table 1. JDL data fusion process model

The JDL model however, is not a universal architecture for pehepplications. It does

not specify the level of data fusion. Data fusion level is an ait-specific problem.

To define the collision warning system architecture, analgsithe system function

requirements is needed.

3.1.4.2 Requirements of the transit FCWS

All the functions defined in the JDL model except level four ageiirements of transit

FCWS. First of all, the source preprocessing must be performeelimminate the
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unwanted signals and to detect the objects of interest. The sdeesnay include
object sensors such as RADARs, LIDARs, CAMs, GPSs, and subjecdievsiensors

such as speedometers, accelerometers, yaw rate and brakingepsessors. Sensors are
used to convert the measurable elements of the physical poadste environment

into electric parameters. The process to convert the phygrogless elements into
electric parameters is observation. Some unwanted signals, sycavament clutter,
road-side trees and traffic signs, etc., and interference fronsaime kind of sensors
mounted on other vehicles or from other sources, as well as noise ifiternal
components of the sensor, must be suppressed in order to pickup the raadighs.

The preprocessing is the process to figure out, from one or more observations, whether a

object exists or not, and to measure the status of the existing object.

The process of finding out whether an object exists or not is dedmetection. It is a
probabilistic test of hypotheses. In the simplest situation, we travénypotheses, H1
and HO, representing the object’s presence and absence redgedine probability of
being H1 while the object does exist, viz. probability of correctaen (R), is always
less than 1. The probability of being H1 while the object does nst, @k. probability

of false alarm (B), is always greater than zero.

The process to measure the object status, such as location acdyyvdiom the
observations, is defined as estimation. The estimated parameta@ndom variables,
because they are calculated from observations and the obseramga@smdom samples

from a probabilistic set.

The results of detection and estimation are called measurenmeritss report. A
measurement comes from single or multiple observations. Measusesras functions of
time, are stochastic processes in reality. Level 1 proagssiould then be performed to
detect the processes and to estimate parameters of thespgodéss assumed in most
cases that false alarms are less possible than realsotgefcirm continuous processes.
The detection of the process will eliminate the false alamasdetermine when a process

begins and when it ends. The estimation of the process will ren@éasurements. The
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results of detection and estimation of processes are calléd.tfetee process to initiate,

manipulate and end tracks is called tracking.

A track represents a stochastic process converted by a sensor fromdicalgirgcess of
an object. The parameters of a stochastic process arepooest to the parameters (as
functions of time) of an individual object. To develop a description of tireeist
relationship among multiple objects and events in the context ofdiheironment, level
two processing is needed. Tracks from different sensors maseeprde same object.
These tracks must be fused into one track. This process is tralb&eto-track fusion,
and the fused track is called the system track. After fusioyst@m track becomes a
refined unique representation of an object. The history of the tracktha relationship
among the tracks as an aggregation represent the traffic iscédace the scenario is
described, level three processing is needed to assess ths. thheaat assessment is the
process whereby the current situation is projected into the fidtassess the severity of
a potential traffic accident. Knowledge about vehicle kinematicHfid, and the
environment is needed for the assessment. Human behavior may alsedbieruthis
assessment. Once a potential threat is detected and exce#ddegheld, a warning will
be sent to DVI. Level four processing is not needed in an FCW8ube the developers

of the system and the vehicle drivers will perform this function outside of thensyst

3.1.4.3 Architecture of the transit FCWS warning algorithm

Studies on collision warning/avoidance during the past few years bailt a good
foundation for the bus FCWS design. Sensors such as RADARs and LIBARSs
automobiles have been developed. Some sensors have been integrated twith buil
Digital Signal Processors (DSP) which can perform source grepsing with some also
able to perform level one processing. It is convenient to adoptititeBgent sensors in
the bus FCWS. Threat assessment algorithms have been studiedriand saverity

measures have been proposed, e.g. TTC, warning distance, warning boundaries.

To develop a collision warning algorithm architecture from the afxldel, one of the
key issues is to decide where to fuse the data in the data\Wewprefer the track-to-

3-26



track fusion that matches the state-of-the-art technologyeodénsors and helps us focus

on higher level processing.

The figure below is the block diagratheofransit FCWS

warning algorithm architecture. Details of the warning atbari are described in the

algorithm chapter.

Physical Source

Object Situation Threat

Sensors . ; ) : HMI
Processes Pre-processing Refinement Refinement Refinement
[ 1 I 1 [ [ 1
Ranging Detection Detection of Process
™  Sensor Estimation Estimation of Procesf
Track
. ; Systel - ) !
Physical ob i M " Track -to- Tracks| Scenario |Scenario$  Threat |Warnings
Environment servations easurements racks’ tra(_:k Parsing Assessment—> H
Fusion
y A A
Ranging Detection Detection of Process
™  Sensor Estimation Estimation of Procesf
—» ilterin
Sensor 9 Knowledge
Vehicle ; Base
Status
Parameter —
—> Sensor ——{ Filtering
L ] 1 | 1
Detection Tracking Assessment

Figure 9 The architecture of the transit FCWS warnirg algorithm

3.2. SCWS System Overview

The computer systems on the bus have four major tasks:
1. Data collection
2. Data processing
3. Data storage

4. User interface

All items in the above list are critical to a functioning sm#@lision warning system

except for the data storage task, which is a necessary tedeatc The major data

processing task is the detection and tracking of objects fromatige data from the

SICK Laser ranger. Early in our design process, it was néped that this task would

consume the largest share of our processor power.

Howeverathengr problem of

objects on either side of the bus easily lends itself to sehkalgpartitioning, leading us to

an architecture of two semi-independent computers.
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While the bulk of the processing is object tracking, most ofddia collected by the
system comes from a set of external cameras that alloalgbethm designer to better
interpret the rather abstract range finder scans. This videodatat part of the core
SCWS. Since it would be impractical to move so much data oven-hicle network,
we added a third computer that serves as a central data rep@sitbrdigital video

recorder.

One further observation is that the right side of the bus is mgsertant that the left
since it faces the curb and is most often near pedestrianthisoeason, all the crucial
vehicle state sensors are connected directly to the rightgsacand shared with other
computers via an Ethernet network. The right computer is alsmé#séer clock in the
system, allowing the different computers to properly interpret thedhata. Finally, the
right computer is the central code repository. Source code, execltadhel
configurations all reside on the right computer’s hard disk, butransparently shared
via NFS (Network File System).

3.2.1 SCWS data acquisition and communication

There are 5 major data sources in the system.

1. Vehicle State

2. LIDAR Data

3. Video Data

4. Ancillary Data

5. FCWS/SCWS Interface
Two CPUs collect and process left and right side LIDAR datgpectively Vehicle state
is a critical component of the SCWS, and is therefore attachin right processor, the
more important of the two, and then shared with other computers ingtensyehicle
state includes odometry and IMU data, both of which are instrumesitt€dnnect to a

serial port.

While both the SCWS and FCWS require a pose estimate, theg@agute their own
estimate and do not share this information. This increases theemdknce of the system
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at the expense of redundant hardware. However, this is more théadusg eliminating
the additional downtime that would come with complete interdependeriee.two

systems do share a physical connection to a PATH installed odometer.

Video data sources include a curb detector and a forward lookingac#mae serves as a
curb predictor. Since the curb detector is more reliable than éaéctor, this instrument
is attached to the right processor, with the predictor cameraeoleft. Only samples of

the raw video data from either instrument are saved.

Where possible, we have tapped into existing vehicle systems to reepmpleur
understanding of what the driver and vehicle are doing. The J1708 data bdsabt®a
engine related information, such as vehicle speed and accelerd&drposition. The
DINEX data bus broadcasts the status of turn signals, warmghtg,lihead lamps, and

tells us which doors are open and whether a passenger has requested a stop.

The DINEX system is not present on all buses, in which caselwem instrumentation
installed by PATH. Since this data is not critical, the FC¥@ects this data and shares
it via a serial link. This serial link is the only form of comnication between the two
systems. It is also used to hand off objects tracked with onensykat are moving into
the field of view of the other.
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4 HARDWARE DEVELOPMENT

4.1. FCWS Obstacle Detection Sensors

4.1.1 FCWS obstacle sensors

The figure below shows the layout of obstacle sensors and videoasa(feont view).
The positions of each sensor/camera are measured in a FCWS refereecd frafname
is originated on the ground under the center point of the frontal bumiepositive

directions of x-, y- and z- axes pointing to driver-side, upward, and forward respecti

D- camera

N BUS 601 [
P- camera F-camerall]
DVI DVI

Fro Viem@

Driver box
L]
PRADAR FLIDAR
PLDAR | 1 I Frontal Bumper [l ||| DLIDAR

Y DRADAR

X
Ground i z

Figure 10 Layout of sensors, cameras and HMI

For convenience, the following abbreviations are used:

F- Frontal-looking or frontal
D- Driver-side-looking or driver-side
P- Passenger-side-looking or passenger-side

- Interior-looking

LIDAR Laser scanning RADAR
RADAR Micro-wave RADAR
CAM Camera

4-30



For example, F-CAMrepresents “frontal-looking camera”, and D-RADASRands for

“driver-side micro-wave RADAR”.

The numbers that are given in the following table are the obstankor positions of
FCWS on the Samtrans bus.

Sensor/Parameter Host bus/Value
Description Parameter Bus 601

X (lateral, mm) 768

Y (vertical to ground, mm) 445
F-LIDAR _

Z(longitudinal to frontal face of the bumper, mm) 25-

Angle () 0

X (lateral, mm) 1150

Y (vertical to ground, mm) 435
D-LIDAR _

Z(longitudinal to frontal face of the bumper, mm) 38-

Angle ( to the left) 20

X (lateral, mm) -1180

Y (vertical to ground, mm) 445
P-LIDAR I

Z(longitudinal to frontal face of the bumper, mm) 76-

Angle ( to the right) 20

X (lateral, mm) 965

Y (vertical to ground, mm) 445
D-RADAR I

Z(longitudinal to frontal face of the bumper, mm) 51-

Angle () 0

X (lateral, mm) -965

Y (vertical to ground, mm) 440
P-RADAR

Z(longitudinal to frontal face of the bumper, mm) 51-

Angle () 0

Table 2. Location and orientation of obstacle deteion sensors
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4.1.1.1 Cameras

Camera X(m) Y(m) 2(m)
(Bus 603)

P-CAM -0.60 2.59 0.27
D-CAM 0.95 2.69 0.26
F-CAM 0.93 2.70 0.13

Table 3. Locations of cameras

4.1.1.2LIDARs (DENSO Corporation)

The table below shows LIDAR specifications.

Detection range 0-120m
Detection angle 40deg (laterak-20deq)
Detection angle 4.4deg(elevation)
Update rate 100ms
Laser wave length 850nm
Laser beam size 0.2deg(lateral) 0.9deg(elevatjon)
Number of detection point5265(ltfjlteral)'6 (elevation)
total: 1590points/cycle

Table 4. LIDAR specifications

The power supply of LIDARs is controlled by a speed-controlled réMdyenever the
bus speed measured is below 3m/s and the creeping detector tletebiss is not
moving, a LIDAR control signal is set inactive to turn off the poweethe LIDARS.

When the bus speed measured is greater than 3m/s or the créetg@icipr detects the
bus is moving, the LIDAR control signal is active and the LIDAR poiseresumed.
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(This relay may be removed if the sensor manufacturer imprbeegdesign to make the

sensor eye-safe.)

4.1.1.3RADARs (EVT-300)

The table below shows RADAR specifications.

Detection range | 0.3-110m

Detection angle | 12deg (laterak6deg)

Update rate 65ms

Table 5. RADAR specification

4.1.2 FCWS Host-bus sensors

Vehicle speed is measured by listening to the vehicle’s $P89/1708 data bus and
also by tapping off of an analog speed signal directly frontrivesmission. This speed

signal from the transmission is filtered and conditioned by an electronictcircui

Vehicle yaw rate is measured using a fiber optic rate gyifois unit is mounted in a
waterproof enclosure under the floor near the rear axle. Timsdinaer has an RS232

interface.

Brake pressure is measured using a pressure transducer mouatspaoa port of the air
brake system under the floor of the driving area. A proximity semdach is used to
determine if the bus is moving at speeds lower than 2-3 miles perisouwunted near a
universal joint on the drive shaft. Turn signal activation and backgty Btatus is

recorded by tapping off the existing turn signal circuit aadking lights. Windshield
wiper activation is determined with a proximity sensor mounted owith@shield wiper

mechanism. The host-bus state signals, including brake pressureghais aind back up
light status , windshield wiper signal, creeping detector statassensitivity level are

filtered before going to A/D converters.
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Figure 11. Interface between the engineering compeit and host-bus sensors

The GPS antenna is mounted on the rear of roof near the exhathst fWAC, the GPS
computer is mounted in a waterproof enclosure near the HVAC evaparrat in the
rear of the bus. The GPS and CDPD modem antenna are mounted ar tfagoef near
the exhaust for the HVAC, the GPS and CDPD modem computers areechanona

waterproof enclosure near the HVAC evaporator unit in the rear of the bus.
4.1.3 FCWS Battery / Ignition monitoring and shutdo  wn circuitry

Two relays control the master power supplies: one is the nratdgr the other is a time-
delay relay. After ignition is on/off, the master relay turnotirthe switch. The switch
will trigger the time-delay relay counter. Once the coun¢acines a preset value, the
time-delay relay will turn on/off the 12V and 24V bus Bars. The purpdgbe time-
delay is to avoid noise-triggered false on/off of power suppliesgaedsome additional
time to the computers to save files before exit the progthaen the ignition is off. The
master relay on/off signal is sent to the engineering comptderglicate the ignition

operation.
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4.2. SCWS Side Sensors

4.2.1 SCWS Laser Scanner

A laser ranging scanner manufactured by SICK, Inc is mountezham side of the bus,
behind the front wheel wells, below floor level. These laser scarare use for object
detection. This is a commercially available LIDAR that hasnbgsed extensively in the
field of robotics and engineering for many years. A detailear @malysis of this sensor
is included in the testing section of this document. The specificdtioribis LIDAR far
exceed what is necessary for this application. It's usage foesiearch prototype system
allowed the collection of high quality range data which can be tsedhow what is
possible with collision warning systems. Any commercial colfisvarning system will
not need to use as high performance LIDAR as we used. With thealkdcted it is easy

to down sample and add noise to see how future algorithms perform.

Figure 12. SICK Laser Scanner and Retraction Assemniip
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4.2.2 Laser scanner retraction system

Each laser is mounted in a box approximately 18" H x 12” W x 1#&Hixh mount in an
opening in the sheet metal side panel of the bus. In operation, eacheldsnds
approximately 4” beyond the side panel of the bus, but they asetextrbelow flush
with the side panel when not in use. A small air cylinder on top df eaclosure box
actuates the retract / extend motion of the laser, which swimg® arm pivoted near the
front of the box. If the laser comes in contact with obstaclefienenvironment, the
compliance of the air cylinder allows the laser to be pushed ibszkhe enclosure to

minimize damage to the laser and environment.

The actuation system comprises:

(2) Bimba air cylinders, 1-1/2” bore x 3” stroke;

(2) Automatic 4-way, spring-return, 24VDC, 8W solenoid valves;
(1) Watts filter-regulator;

(1) 2-way shutoff (ball) valve;

125PSI air supply with storage tank (On bus);

Plastic air tubing, ¥2” OD and push-lock fittings.

With system air and/or electrical power off, the laser tbdlheld retracted into the box
by a return spring. To operate the actuation system, the bed {latated at the bus air
tank) will be opened allowing compressed air to pass through therelgulator (which
will be adjusted to achieve appropriate force from the air cyi#)de the two solenoid
valves located near the cylinders. Spring return on the solenoigwaiNeormally hold
the cylinders retracted, even with zero air pressure. When thesvate activated based
on a command signal from the control computer, air will flow throtinghvalves to the
cylinders, causing them to extend and push the laser support amstagmechanical
stops to precisely position the lasers for operation. When the \a@edeactivated, air
plus the return spring will cause the arms to swing back intbdkegainst a back stop,
such that the lasers will be within the bus envelope. Speed comtrdite cylinders will
be adjusted to give appropriate extend and retract speeds. Cylindeewvsl®&d cubic

inches (each); for the worst case of 125PSIG (max. availabésyme; normal operating
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pressure is 50 PSIG), each cylinder stroke will consume about 58&@t&rd cubic
inches) of air, or about .029SCF (standard cubic feet). Under normal operation, wie expe
operation of the cylinders to occur not more than a few timeshper, so total air
consumption should be small. The bus air tanks each hold about 1 cubicdopsorthe
volume consumed by actuation of two cylinders going full-stroke shoulesbahan 1%

of the tank volume. Leakage (through cylinder seals, etc.) is negligible.

4.3. SCWS Curb Detector
For the SCWS we need to determine the location of the sidénvalkler to better assess

the situation. Pedestrians on the sidewalk are considered safef iy are not on the
sidewalk. We used a laser line striper (LLS) to detect the#igo®f the curb at the front
of the bus. The technical details of the LLS are presented ipexpdere we give an

overview over its working principle and illustrate, how it was mounted on the bus.

camer:

tn

object

Ny

d =scotan)

7

laser

Figure 13 Schematic of a laser line striper.

The LLS projects a pattern of light into the scene that ig@ddy a camera (see Figure
13) and the appearance of the pattern is used to compute distancects objthe
environment. The LLS is attractive because of its relativdl siz@& and robustness. In
addition, computation of range is very low cost compared to other optathalods such
as stereovision that requires high computation.

! Mertz, Kozar, Miller, Thorpe. “Eye-safe Laser Li&riper for Outside Use.” IV 2002, Proceedingshef
IEEE Intelligent Vehicle Symposium (1V2002)une 2002http://www.ri.cmu.edu/pubs/pub_3890.html
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Figure 14 A LLS mounted on a vehicle looking to thaide at various objects. The return from the
sensor is shown in the lower part of the figure.

We have built and employed such a sensor where the light pateepiase of NIR light

and the appearance on the object is a line (see Figure 14). They rdvalir sensor is
that it can work outside in bright sunlight even though the power oofpiie laser is

limited by eye safety. The background from ambient sunlightsuppressed by
synchronizing a pulsed laser with a fast shutter, employingrawiaand filter, and some
image analysis. The figure shows our LLS mounted on a vehmddoaking at various

objects on the side of the vehicle. In the lower part of the figurec@msee the output of
the sensor.

The range and resolution are dependent on the sensor configuratibwe. fiollowing

table they are shown for three different field-of-views:

field of view [deg] 30 55 105

angular resolution [deg] |0.05 0.09 0.16
max. range (ideal) [cm] |700 520 300
max. range (typical) [cm]300 200 130

range resolution [cm] 1.4 2.6 5.0

Table 6. Range and Resolution of Laser Line Striper
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The maximum range is for ideal conditions (high reflectivity olsjeetc.). For typical
conditions, it is about half that distance. The range resolution ia drm distance,

resolution varies with the square of the distance.

The LLS was mounted inside the front bumper of théus with a field-of-view perpendicular to the
side of the bus (see Figure 15).

Figure 15 LLS mounted in the front bumper of the bis. On the left side is a frontal view of the
SamTrans bus with the rubber skin of the front bumper removed. The laser can be clearly seen, the
camera is occluded by the holding bracket. On theight is a side view of the PAT bus. The red

semitransparent area indicates the location of thiaser plane.

The LLS returned the cross section profile of the environment bebieldris. If there is
a curb besides the bus, the profile looked like the one shown in Figure 16.
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Figure 16 Profile of the road and curb observed byhe laser line striper. Some erroneous readings
can be seen above the road.

Finally, the location of the curb was extracted from the proffiea thistogram method

(see papef for details).

During the operation of the bus with the LLS we had following egpees with

environmental conditions:

Temperature: The temperature range for operation in Pittsburgh was betweermaid

120 F. The upper range is 26 above the ambient temperature. This temperature was
added because the laser is located within the black enclosune @onht bumper and
above the black pavement. We needed to add a heater to the laser o oedece this

range of temperatures.

Water: The LLS can be exposed to water through rain or the bus washatve do

some extra waterproofing to the camera.

Mechanical: The camera and laser needed to be tightly screwed to the &fathe
bumper to keep its alignment. No mechanical damage occurredgdime time of

operation.

Dirt: Only a minimal amount of dirt accumulated on the lens of the @orethe exit

window of the LLS, it did not affect its operation.

2 Aufrére, Mertz, and Thorpe. “Multiple Sensor Fusfor Detecting Location of Curbs, Walls, and
Barriers,” Proceedings of the IEEE Intelligent M@bs Symposium (IV2003June 2003.
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4.3.1 Sensor fusion of curb detector, bus state and video

In the previous section we described how we detect the curb méix tfront bumper
with a laser line striper. In this section we discuss howletermine the location of the
curb alongside the bus and in front of the bus. Details of this metmoldectound in a

technical papet.The section below is a summary.

4.3.1.1 Tracking the curb alongside the bus

The movement of the bus is recorded and therefore it is possiblensform past curb
measurements into the current reference frame. The collectioimnesk past curb
measurements in the current reference frame gives us thealnmgside the bus. An
example can be seen in Figure 17, where the curb alongside tlsihdisated as a blue

line.

Figure 17 Curb alongside the bus. On left is a birsteye-view and on the right is a view from the righ
camera. The raw data from the LLS is indicated withred color, the curb position extracted from that
raw data is in green and the tracked curb is in ble.

3 op. cit.
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4.3.1.2 The curb in front of the bus

To detect the curb in front of the bus we use a vision process vghictiialized by the
knowledge of the curb position we already have. The right imageyume=17 shows the
view of the right, forward looking camera. We already know wherecthb is and in
which direction it proceeds. This is used for the initial startdirettion of a search for

an edge in the image. This search is continued till we regmieset limit in the image,
reach the edge of the bus, or reach an object. The position of the object is knowrefrom th
laser scanner data. An orange line in Figure 17 indicates theloesmd af the bus in our

example.

4.3.1.3 Calibration of sensors

The above mentioned method of determining the position of the curb in frahe of
vehicle requires careful calibration of four sensors: Bus staidy detector (LLS),

camera, and laser scanner.

The bus is the reference frame and therefore the location ardabion of the other
three sensors need to be determined with respect to the bus. dten®of the sensors
are all measured using measuring tape. The laser scanner and the bidguated on the
bus in such a way that the orientation of their internal referéiaenes is either parallel
or perpendicular to the axis of the bus reference frame. Thishegaptation from one to

the other coordinate system is easy to be determined.

Only the orientation of the camera is not trivial. First wentwi@ define the rotation

matrix. We use roll angle, pitch angled, and yaw angle.

cos@) -sin(@) O
Equation 1 R(#) =| sin(@) cos@) O
0 0 1

4-42



1 0 0
Equation 2 P(@) =|0 cos@) -sin@)
0 sin@) cosP)

cos(¢y) 0 -sinE)
Equation 3 Y() = 0 1 0

sinyg) 0 cos@)

0 01
Equation 4 C=|1 00
010

The matrix which rotates the camera coordinatékaosehicle coordinates is:

Equation 5 A=CIRIPLY

The matrix C takes care of the different converdifor the orientation of the axis. For
the vehicle the x-axis is forward, the y-axis psitd the right, and the z-axis points
down. For the camera the z-axis is in the forwardation, the x-axis points to the right,
and the y-axis points down.

The goal is now to find the three angles which dbedhe orientation of the camera. For
this one can make use of the image provided by#dmeera. The distance between two
pixels in the image correspond to about 1/10 oégrele in the real world and therefore
one can measure angles quite accurately with the dfethe image. Each point in the
image has one horizontal and one vertical angleeSive need to determine three angles
(roll, pitch, and yaw), we need at least two pointshe image and their corresponding
points in the real world. To simplify the problenewhoose three points with following
properties:

1. The first point has the same y-position (in busrdotwtes) as the camera.
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2. The second and third points are vertical to eabkran the bus coordinate frame.

Figure 18 Example of three points chosen for the tibration. Point a is on the ground at the front
wheel at the same y-position as the camera. Poirlisand ¢ are edges at the lower and upper part of

the open front door.

If the three angles are small, the solution is ¢wad approximation:

Roll = difference in angle between the vertical #mellineb-c.
Yaw = horizontal angle ad.
Pitch = vertical angle o4 after correction of fact that is not at the same height as the

camera.

We found out that this approximation is not alwgg®d enough and we worked out the

exact solution.

The three points are expressed in homogenized icabed:

a b, G
Equation 6 a=|a,|, b=|b,|, c=|cC,
1 1 1
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All vectors in the following section are homogemizee. they are always divided by
their own third component so that the third compamecomes 1.

The approximate yaw angle is:

Equation 7 W, =tan(a,)

To get the approximate pitch angle, we need tatowing calculation:
Equation 8 a, =Y, &

Equation 9 6, =tan(a,,) +tan™(Az/ AX)

whereAz andAx are the distances in tlzeandx directions (bus coordinates) between the
camera and poirg.

Now we can construct following three points by tioig the pointsa, b, andc:

Equation 10 a,, =P(6,)Y(¢.)[a
Equation 11 b,, = P(6,) Y (¢,) b
Equation 12 c, = PNy,

Now we need to find a rotation which will make thee by-c,, vertical while leavingay,
unchangedi.e. rotate arounay, Therefore we need to solve following equation tfoe
rotation anglep:

Equation 13 (S(¢.) tby,), = (S(4.) €,,), =0

where the index 1 means the first component ofvébeor (which of course has been

homogenized). The rotatidhis defined as
Equation 14 S(¢,) =P (a) R(g,) P(a)
Equation 15 a= tan_l(aypz)

Equation 13 is the condition that the two pointedme vertical, Equation 14 is the
rotation around the poir,.
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Putting all the numbers into the equations and gloie multiplications is tedious but

straightforward until one reaches an equation efftnm:

Equation 16 cos@,) x-sin@,) y =z

The solution to this equation is:

Equation 17 @, =+cos* Xth +ylz,
V0@ +y*)(z" +2,%)

With

Equation 18 z, = —m

The anglep, is negative if

Equation 19 cos@,) x-sin@,) y-z >0

Now one can construct the full rotation matrix:

Equation 20 A=C[P(a)R(g,) P(a)P@B,)Y(,)

Notice that this equation does not contain the lusalaangle ¢, pitch angled, and yaw

angley. If desired, one can determine them in the follaywvay:
Equation 21 ¢ =tan, " (a,,,a,,)

6 =-sin™(a,)
Y= tanz_l(azr 3y;)
whereg; are the components of the matfixand tan’(x,y) is the inverse tangent which

takes appropriate care of the sign with respettiedour quadrants.

The solution has been implemented in a Matfaprogram. This Matlal! program
includes an interface which lets you choose thatpddy clicking on the image. It does
the calibration on full images as shown in FiguBeot on quad-images. The calibration is
also used to do image overlays as one can segumneFL7 on the right.
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4.4. PC-104 Platforms
4.4.1 SCWS PC-104 platforms

All computers contain processor boards from varimenufacturers, all based on the
Intel Pentium [Il with speeds ranging from 700 MKz 1.26 GHz. This part selection
was motivated by the need for the most powerfuc@ssor available at the time in a
rugged PC/104 form factor that is capable of wéahdtng extreme temperatures.

All computers run Red Hat Linux 7.2 with a 2.4.1&kel and patched to reduce kernel
latencies. This ensures that a heavily loaded ctenpsi more responsive and allows us
to use Linux for this data driven very soft reahdl task. The benefit of this, as opposed

to a real time system, is in ease of use.

The left and right computers are almost identigdlysically. Minor hardware and
software changes are all that is required to ihi@nge the two.

PC/104 Stack Left Right
CPU
2 Serial Ports
J1708 Interface IMU
100 Mbps Ethernet
40 GB Notebook Hard Disk
Frame Grabber Forward Looking Curb Detectpr Stfparb Detector
_ _ Left SICK Data, FCWS Interfaca, )
High Speed Serial Ports (4) Right SICK Data, Odometry
DINEX
Sound Card (N/A) Driver Vehicle Interface
_ Right SICK Power and
o Left SICK Power and Retraction, . ] )
Digital /0 Retraction, Striper Power, Right
Left DVI
DVI
Power Supply

Table 7. Configuration of Left and Right SCWS Compuers

Measurement of CPU loading on each of the thregpatens indicates that our 600MHz
left computer is 65% loaded, our 1.2GHz right cotepis 45% loaded, and our 700MHz
data logging computer (Digital Video Recorder) @8®loaded.
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4.4.2 FCWS PC-104 platforms

The FCWS system hardware is composed of sensorgngimeering data recording-
processing computer and a video-recording compateiilustrated in the figure below.
The engineering data that sensors send out is dedoand processed by a PC104
computer system. Besides regular ports for a PChf#puter, it has a digital /O card, an
Analog/Digital I1/0O card, a CAN card which reads aalbus, a Serial Port card and a

counter/timer card.

A sensor arrangement for FCWS is designed to ieclsehsors to detect frontal and
frontal corner obstacles and to monitor steeringjeamovement, brake pressure, throttle
position, vehicle velocity and acceleration. Vidkda from the cameras is recorded using

another PC104 computer.
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Removable

Hard drives
GPS " < Host-bus sensors
Driver-side radar < Driver control box
Passenger-side radar Englneerlqg —— J-bus data
data recording
and
Frontal lidar processing | Titler
computer
Passenger side lidar 2 Lidar control/Status/Misc.
Driver side lidar DV
Synchr#nization
Passenger side camera | | (quadcombiner) ., | priver side camera
Video recording
Frontal camera — computer < Interio camera
Removable
Hard drives

Figure 19. FCWS System Architecture

The figure below shows the layout of the computai@sure. The computer enclosure
contains an engineering computer, a video recoedecironics circuits including battery
ignition monitoring and shutdown circuitry, powedagters, bus power bars and cable

connectors.
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FCWS —
Power Bars _ O
Video =1
Adapters Recorder g
wn
FCWS %
Cable o
. . Connectors iy
Engineering 2
Circuit o

Computer Board ——

Figure 20. FCWS Computer enclosure on the bus (topew)

4.5. Digital Video Recorder PC-104 Platforms
4.5.1 SCWS Digital Video Recorder PC-104 platform

The digital video recorder / data repository corepatiso serves as an Internet gateway
via a cellular telephone modem. This provides rensystem monitoring; something we
have found quite useful when managing such a coongylstem in the field.

PC/104 Stack

PCMCIA Interface PCMCIA Cellular Modem Adapter
MPEG-1 Hardware Encoder External Video Cameras
CPU

2 Serial Ports GPS for Location Tagged Data

100 Mbps Ethernet

Removable Disk Drive

Power Supply

Table 8. Configuration of SCWS Digital Video Recorde

Initially, the removable hard drive was a 250 GBskdep model, the largest drive
available. It was hoped that although the envirental vibration and shock would well
exceed the manufacturer’s specifications, the drweald still function most of the time.
This has proven to not be the case. For this reabe two 80 GB notebook drives
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provide enough data storage for about 2 weeks &f as opposed to the 3+ weeks with

the larger drive.

4.5.2 FCWS Digital Video Recorder PC-104 platforms

The cameras capture the front road scene, thaneftright front corner road scene, and
the passenger compartment of the bus. The videamss from the four cameras are
combined into one video stream by a quad image swnhio extend the hard drive
storage capacity. The video-in port of video regaydcomputer is connected to the

video-out port of the quad combiner by &¥%ideo cable.

F-CAM P-CAM D-CAM I-CAM

A 4

Video
Timestampe

A 4 A A A 4
Quad-combiner

i RG59 video cable

Video
Recorde

Figure 21. FCWS Video recorder-camera interface

The video recording system is a standalone PC/¢S#em with a video board. It reads
commands from the engineering computer and recttdsMPEG video clips to a
removable hard drive. The video is recorded at 1dMbyhich is about 450MBytes per

hour. The specifications of the board are as fatow
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General specifications

Capture rate 30 frames/sec (NTSC, RS-170, CIR)
25 frames/sec (PAL)

A/D resolution 8-bits for luminance
8-bits for chrominance

Output resolution 768 X 576 (PAL)

640 x 480 (NTSC, RS-170)
) _ 4 multiplexed input channels total: 2 ' S-

Video inputs . _
video or 4 composite.

Video output m PAL or NTSC from a BNC connector
MPEG2 streaming data at rates of

Output data ) )
kbits to 10 Mbits/second

Bus structure “ﬂ PC/104

Board size 3.80" x 3.55”

Input power ﬂﬂ 5 volts at 280 mA

Number of cards per system 2

Supporting operating systems “ﬂ Windows, Linux, QNX6

Table 9. Video board specifications

The video board supports variable bit rates (nunalbdaits of the stored video data per

second).

4.5.3 SCWS timing synchronization

Internal to the SCWS, NTP (Network Time Protocalused to synchronize the clocks
on our three computers over the Ethernet netwanle. fight computer is considered the
master clock, independent even of the more acc@B® clock, which is however slow
to converge and unreliable as the bus moves. Uygirera boot, the left computer and the
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data storage computer resynchronize their clockshéo master clock to correct for
temperature induced clock drift, which is espegialbticeable when the computers have
been exposed to extreme temperatures. Thereafter NTP daemon on the slave
computer uses the network to statistically sample master clock so that it can
determine the error on the local clock. It corsdbis error by effectively speeding up or
slowing down the local clock to close the differenthe clock is always monotonically

increasing, and without steps in time.
4.5.4 FCWS timing synchronization

The following serial ports on the engineering cotepuare used for synchronization
between the FCWS engineering computer and the vetswoder:

Port 1: Sensor-Video Computer Communications (103248ud)
Port 8: (RS-232) Video timestamper (9600 baud)

The video files and the sensor file need to belsypmized to describe the same scenario.
The video recorder reads commands from the engngee@omputer and records the
MPEG video clips to a removable hard drive. The m@mds from the engineering
computer are “begin recording (with a time stamphptl “stop recording”. Every time the
video recorder gets a “begin record” command isefothe old video file, opens up a new
file (named by the time stamp) and starts recording

D31..D18 D17..D0
Unused Data
D17 D16 D15 D14 D13 D7 D6 DO

Yellow Red Yellow Red

Left Right Right Right Left Section[7..1] Right Section[7..1]

Figure 22 FCWS Warning signal definition
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455 FCWS / SCWS data synchronization

Data between the FCWS and the SCWS is a serialopothe SCWS left computer and
the FCWS at 115 Kbaud. Data that is exchanged &éydmputers is sent with no time
tag, but is saved by the receiver with the recé&vene tag

4.5.6 FCWS / SCWS data protocol

Each message consists of a Header, ID, Length, Caecksum values. The Header is a
four character sequence (HEADERO ... HEADER3). Theda message identification
byte. Messages from the FCWS computer to the S@adrSputer will have odd ID
numbers. Messages from the SCWS computer to tNéJ-Computer will have even ID
numbers. This is a two byte value. The lengthhes tbtal number of data bytes. The
length does not include itself, the header, ID¢cloecksum. This is a 2-byte sequence.
Data is an array denoting the length of bytes. direcksum is the last byte per message.
The checksum is a two's complement of the sum |ahal prior bytes in the message,
including the header, ID, length, and data. The'swomplement is used so that if all of
the bytes of the message (including checksum) arered by the receiver, the result is

zero for a valid message. Specific values and patensiare shown below:

HEADERO 0x99
HEADERL1 Ox44
HEADER?2 0x22
HEADERS3 0X66
PATH_TO_CMU_ID 1
CMU_TO_PATH_ID 2

Bytes for status flags

FRONT_DOOR_OPEN 0x01
REAR_DOOR_OPEN 0x02
RIGHT_TURN_SIGNAL_ON 0x04
LEFT_TURN_SIGNAL_ON 0x08
HAZARD_LIGHTS_ON 0x10
POWER_DOWN 0x20
OVERRIDE_ON 0x40
IN_REVERSE 0x80
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UNKNOWN_POSITION_CM -10000
UNKNOWN_POSITION_M (UNKNOWN_POSITION_CM/10.0
Bit numbers for warning message from SCWS to FCWS
RIGHT_FRONT_LOW_ALERT 0
RIGHT_FRONT_LOW_WARN 1
RIGHT_FRONT_MEDIUM_ALERT| 2
RIGHT_FRONT_MEDIUM_WARN | 3
RIGHT_FRONT_HIGH_ALERT 4
RIGHT_FRONT_HIGH_WARN 5
RIGHT_REAR_LOW_ALERT 6
RIGHT_REAR_LOW_WARN 7
RIGHT_REAR_MEDIUM_ALERT | 8
RIGHT_REAR_MEDIUM_WARN 9
RIGHT_REAR_HIGH_ALERT 10
RIGHT_REAR_HIGH_WARN 11
LEFT_FRONT_LOW_ALERT 12
LEFT_FRONT_LOW_WARN 13
LEFT_FRONT_MEDIUM_ALERT | 14
LEFT_FRONT_MEDIUM_WARN 15
LEFT_FRONT_HIGH_ALERT 16
LEFT_FRONT_HIGH_WARN 17
LEFT_REAR_LOW_ALERT 18
LEFT_REAR_LOW_WARN 19
LEFT_REAR_MEDIUM_ALERT 20
LEFT_REAR_MEDIUM_WARN 21
LEFT_REAR_HIGH_ALERT 22
LEFT_REAR_HIGH_WARN 23
RIGHT_NOTIFY 24
LEFT_NOTIFY 25
RIGHT_UNDER_WHEEL 26
LEFT_UNDER_WHEEL 27
LOW_SETTING 28
MEDIUM_SETTING 29
HIGH_SETTING 30

Table 10. Parameter Values

4-55



4.5.6.1 Data sent from the FCWS to the SCWS

timestamp_secs

Number of seconds since 1/1/1970

timestamp_usecs

Additional microseconds

Warning_msgs

Warning field

Forward object of interest, z=-10000, x=-10000 nseam object

front_obj_x

Longitudinal position of object (= x BCWS)

front_obj_y

Lateral position of object (= -y in B(S)

front_obj_heading

Orientation of object velocity vector (= -headimgSCWS)

front_obj_speed

Left object speed along headirgcton

sound_index

Index of sound in sound directoryorlnione

sound_bearing

Left to right bearing of sound, petage

curb_loc_2x

Longitudinal curb position (= z in FCWS

Status

(Note: REAR_DOOR_OPEN, HAZARD_LIGHTS_ON, 3

\nd

OVERRIDE_ON are not produced by the FCWS)

Table 11. Data sent from the FCWS to the SCWS
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4.5.6.2 Data sent from

the SCWS to the FCWS

timestamp_secs

Number of seconds since 1/1/1970

timestamp_usecs

Additional microseconds

warning_msgs Warning field

brake pressure Brake pressure - currently always 0

Latitude GPS latitude

Longitude GPS longitude

Altitude GPS altitude

Speed Speed from vehicle state estimation in knn/hou

Left object of interest, x=-10000, y=-10000 meaahbject

left_obj_x

Longitudinal position of object (= z FCWS)

left_obj vy

Lateral position of object (= -x in FCWS

left_obj_heading

Orientation of object velocity t@c(= -heading in FCWS)

left_obj_speed

Left object speed along headingtioe

Right object of interest, x=-10000, y=-10000 meao®bject

right_obj_x

Longitudinal position of object (= z FCWS)

right_obj_y

Lateral position of object (= -x in FC3\/

right_obj_heading

Orientation of object velocity vector (= -headimgACWS)

right_obj_speed

Right object speed along headiregtion

Tracked and predicted c

urb locations, ordereddreising x (longitudinal)

curb_loc_1x Longitudinal curb position (= z in FCWS
curb_loc_1y Lateral curb position (= -x in FCWS)
curb_loc_2x Longitudinal curb position (= z in FCWS
curb_loc_2y Lateral curb position (= -x in FCWS)
curb_loc_3x Longitudinal curb position (= z in FCWS
curb_loc_3y Lateral curb position (= -x in FCWS)
curb_loc_4x Longitudinal curb position (= z in FCWS
curb_loc_4y Lateral curb position (= -x in FCWS)
curb_loc_5x Longitudinal curb position (= z in FCWS
curb_loc_5y Lateral curb position (= -x in FCWS)

curr_curb_loc_x

Current Longitudinal curb positignz in FCWS)

curr_curb_loc_y

Current Lateral curb position (3mECWS)

sound_index

Index of sound in sound directoryorlnone

sound_bearing

Left to right bearing of sound, petage

Status

(Note: IN_REVERSE is not produced by the SFW

Table 12. Data sent from the SCWS to the FCWS
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5 SYSTEM SOFTWARE

5.1. SCWS Software Architecture Development
The SCWS uses software architectural and commuoinsatools that were originally

developed to support the ongoing robotics reseafchthe Navlab projecf. The
architectural tools allow algorithm developers tewwthe rest of the system through a set
of abstract, reconfigurable interfaces. In theiahitlevelopment and ongoing debugging
of an algorithm or in the post development analysfisdata, the interfaces can be
configured to read data from time tagged files gsancommon set of data access tools.
As the algorithm matures, the interfaces can benfegured to use a common set of
inter-process communications tools which integridwe individual algorithm into the
larger system running in the field.

5.1.1 Inter-process communications

The vast majority of inter-process communicatiomghe SCWS can be considered as
analogous to signals in electronics. These areated estimations of a consistently
changing value, such as the most recent line scatata or most recent set of tracked
objects in the environment. It doesn't truly mattehe recipient misses a signal value:
all that matters is the most recent value. Whasdoatter is the minimization of latencies
in transporting the signal value from producergdasumers. An appropriate paradigm
for propagation of signal type information is glbBhared memory: A producer sets the
memory and a consumer simply reads the most ra@ué. The Neutral Messaging
Library (NML) from the Real-Time Control System (BE library produced by NIST
demonstrates this control-centric method for irdéigg robotic systems. We have chosen
a simpler implementation than NML for global shamémory which uses a "single-

writer, multiple-reader” model. When processes eoemunicating on the same

* Thorpe, Charles E. Vision and Navigation: The @aie Mellon NavlabKluwer Academic Publishers,
1990.

®> Gowdy, Jay. Emergent Architectures: A Case Stodyutdoor Mobile RobotsThesis for PhD at the
Robotics Institute, Carnegie Mellon, CMU-RI-TR-08-2November 2000.

% Gazi, Moore, Passino, Shackleford, Proctor andis\lfhe RCS Handbook: Tools for Real-Time
Control Systems Software Developmedéew York: John Wiley & Sons, 2001.
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machine we use actual System V shared memory, ahevehen processes are
communicating between machines we transparentlgggate changing memory values
from writer to readers via the UDP socket protanahaged by shared memory managers

running on each machine.

One of the reasons we chose to implement a sinfdeed memory communications
scheme rather than adopting NML was that while aggrmake up the bulk of the
communications, signals are not the only paradigmntter-process communications in a
robotic system. Symbols, i.e., atomic pieces @drmation, changes in state, or requests
for information, are very difficult to communicatea a signal-based communications
paradigm. For example, unlike signals, if a symbaue is dropped or missed, then
information is lost, state changes don't get ndticend requests are ignored. The
guarantee that a symbol has been transported frotarwo reader is worth significant
additional latency and complexity in the implemeioia Symbolic information is
typically communicated in robotic systems via TEPtiessage based packages

ranging in complexity from the raw use of sockérdries all the way up to complex,
object based systems such as the Common ObjecteBRediroker Architecture
(CORBA)." In order to limit the complexity and size of @aftware while still providing
some abstraction and flexibility, we have chosesimple TCP/IP based messaging
package developed for the Navlab project: The 4Rrecess Toolkit (IPTY.

A key abstraction built in the SCWS using the mgsga toolkit is the concept of a
central black board. Individual algorithms mairdyery the black board for their
configuration parameters, but they can also pdstnmation in the black board and watch
for changes in values on the black board. Thuesbthck board becomes a channel for
propagating information through the system that toabe generally available, but for
which a certain degree of latency is acceptable. é&xample, when a driver sets the
sensitivity switch to different levels, this causexhange to be posted to the warning

" The Object Management Group. The Common Objectu@sidBroker: Architecture and Specification.
Massachusetts: 1996.

8 Gowdy, Jay. {IPT}: An Object Oriented Toolkit fénterprocess Communicatiofiechnical Report for
the Robotics Institute, Carnegie Mellon Universi§MU-RI-TR-96-07. March 1996.
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levels stored in the central blackboard. Thesegbs are then propagated to the warning
algorithm automatically and transparently. In &iddi since much of the system's high

level information is being funneled through thedilaoard, we have chosen to make the
black board manager the system process managernnitiites, parameterizes, and

monitors the system processes. Interestingly,garadigm of a central black board was

one of the earliest used in roboticdut it has been often rejected because if thekbla

board is the only means for propagating informatimough the system, it becomes an
intolerable bottleneck for the kind of low-latencyigh-bandwidth signal-type

information that forms the backbone of informatftmw for a real robotic system.

Thus we see the core of our communications philmgomstead of having one tool or
one approach, which must be bent and stretchedrtdlé all possible uses, we select a
suite of simple tools, each one narrowly focused qguarticular style of communications

necessary for the efficient and successful operatidhe system.

5.1.2 Vehicle state propagation

A fundamental question for most mobile robots whére am 1?" For almost every
module in the SCWS this question needs to be aesinsgfore going on to "what am |
seeing?" Thus, a fundamental part of the SCWSitaotbre is the ubiquitous
availability of vehicle state, i.e., the estimateminere the vehicle is, where it is pointing,

and where it is going.

In past Navlab systems, the question of "where @mvas assumed to mean "where am |
right now?". Thus, perception algorithms would &skere am | right now?", get the
answer from the pose estimation system, and theiy ajat to the latest sensor
information. This works fine when a robot is maysiowly, at a few meters per second,
but when a robot is moving fast, at 10, 20, or e8@m/s, small discrepancies in time
between the latest sensor pose estimation andatést Isensor information can lead to
significant errors in placing that sensor inforroatin the world, and thus to significant

errors in operation.

° Hayes-Roth, B. A blackboard architecture for cohtrtificial Intelligence, Volume 26. 1985: 251-321.

5-60



The goal of the current Navlab pose estimationesystised in the SCWS is to allow
perception algorithms on any machine in the sysiskn"where was | at time T?", where

T is the time stamp of some relevant sensor event.

The pose propagation architecture we use is shalowb On one machine there is a
pose estimation system connected to all the varieeissors which is repeatedly
answering the question "where am |?" Each posma& is put into a ring buffer in
shared memory that any process on that machine@aess. The user pose estimation
routines take a time tag, and attempt to interpqfat extrapolate a small amount) in this
pose history buffer to come up with the best esenad the vehicle pose at the requested
time. When a new pose estimate is created, irtiaddb being entered in the local pose
history table, it is sent via the shared memory agans to every machine in the system.
On each of these client machines there is a progagsg for incoming pose estimates
and using them to build a pose history buffer whoaeim be used by other processes
running on that machine to precisely match up gssenations with sensor time tags.
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Master Processt

IMU Vehicle State Vefgtliilsn?tate
Odometr »  Estimator
GPEy—;: Vehicle State

DINE History Table

Current Vehicle Stat

\

Client processor Current Vehicle State

Vehicle State
Propagator

Vehicle State
Client

Vehicle State
History Table

Of course, a potential weakness of this systermasthe clocks on all the machines must
be precisely synchronized. Although we experimgmnéth using hardware solutions
using the IRIG-B protocol to allow us to have tirastimates synchronized to within
microseconds across machines, we found that tleéyfewvailable package NT® could
synchronize our clocks to within a millisecond a&sdhe machines, even in the face of
the harsh, changing environmental conditions entssad by a system running over long
periods of time on a transit bus. Millisecond dymny is more than sufficient for

successful integration of vehicle pose and semdormation even at high vehicle speeds.

5.1.3 Data flow

Apart from the ubiquitous connections to the blagdod and vehicle state propagation
system, the data flow for the vast majority of commncations within the SCWS is fairly
simple. The system has a left side processor wbdicttains most of the processes for

producing warnings on the left side of the busjghtrside processor for producing

10 Mmills, David L. Internet time synchronization: Thetwork Time ProtocolPublished as: The Network
Working Group Request for Comments: 11@@tober 1989: 1-29.

5-62



warnings on the right side of the bus, and a ceptacessor responsible for managing

the system, saving data from the left and ride pideessors, and saving a video record

of the bus operation.

5.1.3.1 Left side data flow

On the left side of the bus, warnings are genetaésed only on the laser range data.

The data from the SICK laser range finder is reablyi a reflexive "guarding” module.
This module monitors the returns from the lasegeafinder and the velocity of the
bus to do a quick determination if the sensor litllanything. If the algorithm sees an
imminent collision, it sends the signal which retsathe sensor and flags the range
data as "bad". The algorithm continues to mortit@r environment as best as it can
from its retracted position, and when it determitiesre is enough room to extend
safely, it does so. This algorithm should be ocde&rsd analogous to a "flinching"
reaction in a human which keeps the sensor (amgethe sensor may hit) safe. No
matter what happens, the guarding module publiieedaser data to the rest of the
system via shared memory. The guarding moduleesdamines the quality of the data
coming from the laser. If it detects too many pament blockages, usually due to
mud or dried road salt, it will retract the sensnotil the sensor is cleaned.

The detection and tracking of moving objects (DATMHIgorithm reads in laser data
and vehicle state data via shared memory and pesdudist of moving and stationary

objects around the vehicle.

The warning algorithm takes the list of moving astdtionary objects around the
vehicle and combines the vehicle state (specificdle bus velocity and turning
speed) to predict collisions. It produces an aaeok list of objects with warning

classifications and overall warning level.
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- The left Driver Vehicle Interface (DVI) control mokk watches the overall warning
level and controls the appropriate lights on thi¢ $&de to warn the driver about
objects around the vehicle. The left DVI contraddule also monitors the sensitivity

and override switches on the DICB and changes satuthe blackboard in response.

SICKLMS 291 Classified Objects
X Ranges, bearings Shared Memory.
Sensor DATMO Warning
Guarding | Ranges, bearingsj Objects | Generation
l Warning Levels
Sensor Retractor g \ DViI
Control

5.1.3.2 Right side data flow

On the right side of the bus, the system uses la detection and prediction system to

augment the laser range data in generating warnings

- The curb striper algorithm digitizes a laser st@inted on the curb and uses its
knowledge of the intrinsic and extrinsic cameraapagters to produce a set of
detected 3D points to shared memory

- The curb processing algorithm combines the outpthecurb striper with the vehicle
state data to produce an estimate of where thewasbover the last few seconds. It
then digitizes an image from the right rear forwhkoroking camera and uses the curb
estimate to initiate a visual search for the curbaal of the bus. The resulting curb

information is published via shared memory.

- The warning algorithm is configured to read thebcumformation and uses it to
modify its warning level production.

- As with the left DVI control module, the right D\¢bntrol module monitors the right
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warning levels and sets the lights appropriatéfye right DVI control module does
not monitor the switches. That is done by theDaft control module alone.

SICKLMS 291 Classified Objects
X Ranges, bearings Shared Memory,
Sensor DATMO Warning
Guardin > . » Generation
g Ranges, bearings Objects
lelrb 3D Points Curb %Warnin_ DVI
Striper ™ Processor|  Positions Levels™| Control
Tlmage: Tlmage:
Curb Camera Forward Looking
Camera

In addition, the right side processor has the \ehstate estimation module that is

connected to the various sensors and data soudceraduces the actual vehicle state for

the rest of the system.

5.1.3.3 Central processor data flow

The central processor is responsible for many & tlata collection and system

management aspects of the system.

.

It runs the central blackboard and process managemeadules.

The four external side bus cameras feed into a-gaatbiner which then feeds into an
MPEG encoder card which the central processor reddsee MPEG stream is time

tagged and saved to disk
It runs modules attached to all the other varidwsed memory outputs on the system,

such as vehicle state estimation, laser range dktssified objects, etc., and saves
them to disk.
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5.1.4 Integration with the FCWS

The connection to the Forward Collision Warning t8gs (FCWS) is through a serial
link. There is a gateway module running on the pebcessor which gathers together,
packages, and writes the following information otret serial link:

- Warning levels

- Nearest object position and speed for each side

« Curb position, if any

« GPS position

- Vehicle speed

- Auxiliary bus state information, such as door opkaged status or lights status.

The gateway module also monitors the output froemREWS and saves the following
information:

- Front warning levels

- Nearest front object position and speed.

. The FCWS's estimation of the auxiliary bus statermation.

The bus state information is duplicated becauseatieal hardware sensors may not be
connected to the same system on different platforifts example, on the Pittsburgh bus
the SCWS system has direct access to the bus isfatenation sensors and has a
separate module to read and publish these valuesniithe San Mateo bus, the bus state
information is read from the FCWS and propagatedhto rest of the system by the

gateway module.

5.2. FCWS Software Introduction
This chapter focuses on the data acquisition progod the FCWS on integrated

Samtrans bus 601. This includes most of the intedfdhat serve as the bridge between
the low-layer hardware/software drivers and theeupayer application programs such as
warning algorithms. The communication of FCWS a@dVIS is specified in the ICD

document.
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Application Programs

Data acquisition program

Hardware/Software Drivers

Figure 23 FCWS Data acquisition program

The purpose of the data acquisition program i@ slata from sensors and synchronize
the engineering computer with a video recorder.idadly, the data acquisition program
is comprised of an initialization process and glbody; the program has a short period
of time to save all files and then to abort whea plower is turned off. The loop body is
composed of the following actions:

Copy the sensor data from the database to the ioealory.

Save sensor data from the local memory to a saiskffiles.

Check power-off flag (if power-off flag is set, rpower-off subroutine)

Check time consumed for file collection.

(If exceeds 15 minutes, open a new set of files)

Generate synchronization signals.

Wait for the 75ms flag.

N o g M wDd e

The LIDAR data is saved every 75 ms, which is thedst update rate. About every 15
minutes old files will be closed and a new setilekfwill be opened. A timestamp is also

included with each entry.
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5.2.1 FCWS Software structure

Exit

Initialization

Copy sensor

data to local

memory

Save data of sensors from local
memory to the files

Power off
subroutine

‘ Power resumes

Close files
open a new set

Synchronize with
the video system

75ms

Y

Figure 24 FCWS Software flow chart
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5.2.2 FCWS Initialization

5.2.2.1 Define variables

5.2.2.1.1 File pointers (Global variables)

File pointer Sensor
*f_ RADARA P-RADAR
*f_ RADARB D-RADAR
*f_LIDARO F-LIDAR
*f_LIDARM P-LIDAR
*f_LIDARN D-LIDAR

Table 13. FCWS File pointers — sensors

5.2.2.1.2 System signals

Signal Description
SIGINT Interruption
SIGQUIT Quit
SIGTERM Terminate
ERROR System error

Table 14. FCWS System signals

After initialization (signals added), whenever fr@gram receives these signals, it will
close files, log out of the database and exit.&@mple, Ctrl+C from the keyboard will
generate a SIGTERM signal and this program wileree the signal then close files, log

out of the database and exit.

5.2.2.1.3 Database variables

The following database variables are used for @dalvead operation; each variable (a
structure) contains some variables and an unsighad This char will be the pointer of
the sensor data in the local memory after the di@cwof clt_read () function (database

read operation).
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Variable Sensor
Db_data_radarA P-Radar
Db_data_radarB D-Radar

Db_data_LidarOA

F-Lidar(section A)

Db_data LidarOB

F-Lidar(section B)

Db_data_lidarMA

P-Lidar(section A)

Db_data_lidarMB

P-Lidar(section B)

Db_data_lidarNA

D-Lidar(section A)

Db_data_lidarNB

D-Lidar(section B)

Db_data_long_input Host-bus sensors

Db_data_gps_gga GPS
Db_data_gps_vtg GPS
Db_data_jeec2 J-bus

Db_data_dduA
Db_data_dduB

DDU-display of P-Radar
DDU-display of D-Radar

Table 15. FCWS Database variables — sensors

5.2.2.1.4 Sensor data pointers

The pointers listed below point to the sensor datéhe local memory. For instance,
pPRADAR gets its value from the database variablke:data radarA or db_data_radarB
that contains the pointer pointing to the RADARalafhe data structures of RADAR,
LIDAR, host-bus sensors are shown in FCWS hardwlasamentation. These pointers

are then used to save sensor data from local metm@¥ard disk.
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Pointers Sensor

*pradar RADAR
*pddu_display DDU-display
*plidarA Lidar(section A)
*plidarB Lidar(section B)
*plong_input Host-bus sensors
*pgps_gga GPS (position)
*pgps_vtg GPS(speed)
*plong_jeec For J-bus

Table 16. FCWS Sensor data pointers

5.2.2.1.5 Timevariables

5.2.2.1.5.1 Start_time, Curr_time

These two variables are used to check the timeucoed for file collection, if Curr_time-
Start_time>15 minutes, the old files will be closedl a new set opened.

5.2.2.1.5.2 Hour, minute, second, millisec

These four variables are used to generate thedirday an entry is recorded.

5.2.2.2 Process user switches

A user should specify the time for file collectidn.this program, 15 minutes are allotted

for file collection. Command formatrfiles3 —m 15

5.2.2.3 Open a serial port for the titler

This port is used to send current time (hour, n@susecond) to the titler for adding a

timestamp.

5.2.2.4 Log in to the database

In order to read data from the database, we negetta node ID and then log in to the
database.
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5.2.2.5 Get the current time

The current time is used to calculate time consufoefile collection.

5.2.2.6 Open files

File name Sensor
AMMDDSSS.dat | P-Radar
BMMDDSSS.dat | D-Radar
OMMDDSSS.dat | F-Lidar
MMMDDSSS.dat | P-Lidar
NMMDDSSS.dat | D-Lidar
EMMDDSSS.dat | Host-bus sensors and others

Table 17. FCWS File name format

In the above names, MM is replaced by a 2-digit tinaode, DD is replaced by a 2-digit
day code, and SSS is replaced by a 3-digit sevi@d.cSerial codes for a given day start at
000 and proceed to 999. Detailed information of fie format is in the program

comments.

5.2.3 FCWS Loop body

5.2.3.1 Database operations

The program copies the specified sensor data frioen database to local memory

consecutively before performing any disk operatigRtease note, we do not read data of
a specified sensor, save it to a disk file, and tlead data of another sensor.) As a result,
the timestamp of all disk files can be consistéhe reason is that memory operation are

much faster than disk operations, given the saraatgy of data transmissions.

5.2.3.2 Disk file operations

Disk file functions save: the data of RADAR senaad DDU display, two sections of
LIDAR sensor data (section A and section B combingad saves data of host-bus
sensors, GPS, and J-bus data. All these save duscgerform memory read and disk
write operations and add the same timestamp to files.
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5.2.3.2.1 RADAR fileformat (P-RADAR, D-RADAR)

Time of day this Time of day of last message, hours
entry is recorded
Time of day of Time of day of last message, minutes
last
47 e Time of day of last message, seconds
Target #1
Time of day of last message, milliseconds
Target #2
Target #3 Target #5 ID, 1-255 unsigned char
Target #4 Range, LSB=0.1 ft short int
Target #5 Relative Velocity, LSB = 0.1 ft/sec short int
Target #6 Azimuth, LSB = 0.002 radians (-:left,+:right) signed char
Target #7 Magnitude, LSB =-0.543 dB unsigned char
Time;i:i;y of last Target #1 lock, bit mapped* unsigned char
ssage

(ddu_display)
Light control | char

*(1=locked, 0=not locked) Bit 0 is current FFT frame
(n), bit 1 is FFT frame n-1, ..., bit 7 is FFT frame n-7.

Audio control | char

Figure 25 FCWS RADAR file format
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5.2.3.2.2 LIDAR fileformat (F-LIDAR: First generation)

signed char

signed char

Time of day this
entry is recorded

Time of day of
last message

Target #1

Target #2

Target #3

Target #4

Target #5

Target #6

Target #7

Target #8

Horizontal curve
radius *

Lateral curve
radius *

* Received from PC

Lateral position, high byte

Lateral position, low byte, LSB=0.01m

Vertical position, LSB=0.5 line

Distance, high byte, LSB =1.28 m

Distance, low byte, LSB=10.01 m

Lane rate, 0-100%, LSB=1%

Vehicle rate, 0-100%, LSB=1%

Target status

Lateral velocity, LSB=0.03m/sec

Relative velocity, high byte

Relative velocity, low byte

Width, high byte

Width, low byte

Height, LSB=1 line

Depth, high byte

Depth, low byte

Relative acceleration, LSB=0.05m/s"2

Figure 26 FCWS lidar file format
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5.2.3.2.3 Host-bus sensor file format

float
float
float
float
float
float

int
int
int
float
float
float
float
int
float
bit
float
float
float
float
float
bit

int

5.2.3.3 Check power off flag

If the power off flag is set, there is less thamihute to close files and clear video alarm
signals. If power resumes within 1 minute, a new cfefiles will be opened, a new

timestamp will be sent to the video recorder arldsghchronization signals will be

Time of day this entry is
recorded

Steering angle

X-acceleration

Y-acceleration

Z-acceleration

Brake pressure

J- bus Wheel speed

GPS_gga_typ

Current UTC time of fix in hours, minutes and seconds

Latitude component of position in degrees and decimal minutes

Longitude component of position in degrees and decimal minutes

Altitude in meters above the ellipsoid

GPS_vtg_typ

1 minute flag

Speed over ground float

15 minutes flag

60 minutes flag

Left turn signal

Right turn signal

Accelerator pedal position

Sensitivity

Warning message

Windshield wiper voltage

Lidar control flag

Gyro rate

Back-up light voltage
Speedl
Speed?2
Speed3

System status

Video flag
Time of day of Tast
message from video system

Figure 27 FCWS Host-bus sensor file format

cleared before the program check time consumefiléarollection.
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5.2.3.4 Check time to open a new set of files

If the current time - the start time >15 minutde old files will be closed and a new set
of files will be opened. Whenever a new set is egetiie current timestamp will be sent

to the video recorder through the serial port ayeapened.

rrent time - start i
>15 minutes

Y

v

Reinitialize the start time
¢

Close the old file set
open a new file set, send video timesta

‘ o
-

v

Figure 28 Check time to open a new set of files

5.2.4 FCWS Synchronization

The video files recorded and the sensor file resthnoeed to be synchronized to describe
the same scenario. The engineering computer wiltl sbe master time to the video
recorder after ignition to synchronize the two eyss in real time. The video recorder
will adjust its clock accordingly. The engineeriogmputer will send instructions to the
video recorder to open or close a file for videcoreing when it opens or closes a new
set of engineering files. The video recorder ablwords the start time and end time of

each video file for synchronization verification.

5.2.5 FCWS Program exit

The program will abort when the power is turnedfofffour minutes. The program will
exit when there are:

(1) Signals (added in initialization) received

(2) Invalid user switch or bad number of minutesfile collection.

(3) Failure to initialize the timer (75ms).

(4) Error in opening serial port for video timesfam

(5) Database initialization error, database readimgr, database update error.
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6 ALGORITHM DEVELOPMENT

6.1. Object Tracking Using Scanning Laser Rangefinders
CMU has developed software for the tracking of gkts and pedestrians using scanning

laser rangefinders mounted on a moving vehiclehigh the system combines various
algorithms and empirical decision rules to achieeeeptable performance, the basic

mechanism is tracking of line features, so we ttadl approachinear feature tracking.

There are three major parts to this presentation:
Introduction of the sensor characteristics, congoariwith other tracking problems,
and discussion of some specific problematic sibunasti

- Presentation of the structure and algorithms ugdtidtracker.

Discussion of the performance and limitations ef ¢arrent system.

6.1.1 Input/ Output example

To get some idea of what the tracker does, consiigetracker input and output. Figure

29 is a portion of an input frame from the lasegefinder:

Figure 29: Tracker input (one frame)

Figure 30 is a visualization of the tracker outplihe numbers are track identifiers, with
additional information displayed for moving trackg.rack 38 (brown) is a car moving at
5.7 meters/sec and turning at 21 degrees/sedie light blue arc drawn from track 38 is
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the projected path over the next two seconds. okher tracks are non-moving clutter
objects such as trash cans and light poles. Tiualagcanner data points are single pixel
dots. The straight lines have been fitted to thesets. An X is displayed at the end of

the line if we are confident that the line end es@nts a corner.

41
44

\\_‘J S

43

T 3% w57 ROL4 T2

\

Figure 30: Tracker output example

6.1.2 Sensor characteristics

A laser rangefinder (or LIDAR) is an active optigalsition measurement sensor. Using
the popular time-of-flight measurement principldaser pulse is sent out by the sensor,
reflects off of an object in the environment, thtee elapsed time before arrival of the
return pulse is converted into distance. In a sicanlaser rangefinder, mechanical
motion of a scanning mirror directs sequential meament pulses in different directions,
permitting the building of an approximation of a 2iddel of the environment (3D with
two scan axes.) We will use the tesbanneras a shorter form of scanning laser

rangefinder.
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Figure 31: Scanner angular resolution

The scanning mirror moves continuously, but measargs are made at discrete angle
increments (see Figure 31.) Though this is natast how the scanner operates, the
effects of angular quantization are easier to wtded if you visualize the scanner as
sending out a fixed pattern of light beams whicleaw across the environment as the

scanner moves (sort of like cat whiskers.)

When viewed in the natural polar coordinates, titational (azimuth) and radial (range)
measurement errors are due to completely diffgqpemtesses, and have different range
dependence:

- The azimuth error is primarily due to the angulaargization, though this is related
to the underlying physical consideration of laspotssize. For a given beam
incidence angle on the target, the Cartesian pasitncertainty is proportional to the
range.

- The range measurement error comes from the pee-paigye measurement process,
and in a time-of-flight system is largely due te timer resolution. This results in a
range accuracy that is independent of distance.
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Linear feature tracking was developed for a cdfiswarning system for transit buses.
This system uses the SICK LMS 200, which is a sicenlaser rangefinder with a single
scan axis. The scanner is oriented to scan inriadmal plane, and all processing is
done using 2D geometry in this scan plane. Pmdioce specifications are 1cm range
resolution, 50 meter range, 1 degree basic azimestblution and 75 scans/second update
rate. The output of the scanner is simply a veabrl81 range values. If the
measurement process fails due to no detectablmretuis is flagged by a distinct large

range value.

Note that with these range and angle resolutitresposition uncertainty is dominated by
azimuth quantization throughout the entire usepdrating range. At a practical extreme

range of 20 meters, a one degree arc is 34cm, ahéne range resolution is still 1cm.

6.1.3 The tracking problem

Given this sensor, we would like to identify moviagjects, determine the position and
velocity, and also estimate higher order dynamizhsas the acceleration and turn rate.
The tracker must also be computationally efficembugh so that it can process 75 scans

a second in an embedded system with other compgtotgsses.

A track is an object identity annotated with estimateslyfamics derived by observing

the time-change. The function of the tracker ig¢aerate these tracks from a time-series

of measurements. The purpose of maintaining thecblaentity is twofold:

- We need to establish object correspondences frammasurement to the next so that
we can estimate dynamics.

- The object identity is in itself useful as it allsws to detect when objects appear and

disappear.
In general, tracking can be described as a thegepbcess which is repeated each time a

new measurement is made:

1. Predict the new position of each existing track based lan last estimate of

6-80



position and motion.

2. Associate measurement datdth existing tracks. If there is no good match,
consider making a new track.

3. Estimatenew position and motion based on the differencevéen the predicted

position and the measured one.

6.1.3.1 Comparison of tracking with laser scanner vs. other sensors

The problem of tracking moving objects using a saam laser rangefinder is in some
ways intermediate in characteristics between loagge RADAR tracking (e.g. of

aircraft) and computer vision tracking.

What advantages for object tracking does a lasanrsr have over computer vision?

Two difficult problems in vision based tracking are

- Position:determination of the position of objects usingatscan only be done using
unreliable techniques such as stereo vision ornaisgua particular object size.
Position determination is trivial using ranging sers like RADAR and laser
scanners, as long as there is adequate anguléutresp

- Segmentatianwhen two objects appear superimposed by our petise, how do we
tell where one ends and the next begins? Rangsumeaent makes segmentation

much easier because foreground objects are clegplgrated from the background.

An important problem that laser scanners have mnzon with computer vision igoint
correspondence:given two measurements of the same object, whickcip

measurements correspond to the same point on jbet.ob

In long range RADAR, the point correspondence moblypically doesn't exist -- the
object size is at or below the angular resolutsmthe object resembles a single point. In
contrast, when a laser scanner is used in an uhtdang situation, we need to be able to
track objects whose size is 10 to 100 times oumukangesolution. Not only do the
tracked vehicles not resemble points, after takig consideration the effect of azimuth
resolution, they often effectively extend all thayto the horizon in one direction.
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When the size of objects can't be neglected, ttéates ambiguity in determining the
position of the object (what point to use). Siadeacker estimates dynamics such as the
velocity by observing the change in position owuenet this position uncertainty can

create serious errors in the track dynamics.

As in computer vision, the extended nature of dbjeines also have some benefits.
Because we have multiple points on each objectcave make use of this additional

information to classify objects (bush, car, etc.)

6.1.3.2 Shape change

It is a crucial aspect of the tracking problem c¢desed here that the laser rangefinder is
itself in motion. If the scanner is not movinige tproblem of detecting moving objects is
trivial: just look for any change in the sensordieg. Once the scanner is moving, we
expect fixed objects to appear to move in the doatds of the scanner, and can correct

for this with a coordinate transformation.

It is assumed that the motion of the scanner isctlif measured, in our case by a
combination of odometry and an inertial turn ragé@sor. Since tracking is done over
relatively short ranges and short periods of tithe,required accuracy of the estimate of

scanner motion is not great, and relatively inespansensors can be used.

The more intractable difficulty related to scanningm a moving vehicle is that, even
after object positions are corrected by a coordinaansform, the appearance still
changes when we move due to the changing scanrspgoéive. The scanner only sees
the part of the object surface currently facing shanner. As the scanner moves around

a fixed object, we see different contours of thgzclsurface.

The shape change doesn't cause any serious diffifarl determining that scan data
corresponds to the same object from one scan todkebecause the change is small.
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What is difficult is determining that these smahaoges are due to changes in

perspective, and not actual motion of the trackgdai.
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Figure 32: Shape change

To get a sense of the shape change problem, comsitive algorithm which considers
the object position to be the mean position of dbgect's measured points (see Figure
32.) Suppose that we are driving past a parkedAgtime 1, we see only the end of the
car. Attime 2, we see both the side and end.tiBg 3, we only see the side. During
this process, the center of mass of the pointildigion shifts to the left, giving the
parked car a velocity moving into our path, causantplse collision prediction. The
point distribution also moves in our direction obtmon creating false velocity in that

direction.

6.1.3.3 Occlusion

Another problem happens when a small object mornesont of a larger background
object (see Figure 33.) In this case, what idfieceéthe shadow of the foreground object
creates a false moving boundary on the backgroundco (as well as splitting the
background object in two.) Due to the changing pecive, moving shadows also appear

when both objects are fixed but the scanner is ngpvi
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Figure 33: Occlusion

6.1.3.4 2D scan of a 3D world

Two major problems come from using a single axaser:

* When the scanner pitches or rolls, we see a diffexentour of each object, and if the
surface is not nearly vertical, we may see a largeunt of motion.

* When the ground is not flat, the scanner beam nitathd ground, resulting in seeing
the ground itself as an obstacle. Due to pitch gl these ground-strike returns

may also appear to be rapidly moving.

Use of a scanner with several beams that scan rallgdacan greatly help with this
problem because we can detect when the beam ksgtan object that is significantly

sloped, and either disregard it or attempt to corsgte in some way.

6.1.3.5 Vegetation

With some objects, the outline seen by the scaappears to fluctuate in a random way
as the scanner moves. Vegetation has this problégure 34 shows the superimposed
points from 20 scans combined with markers for plwéents from one single scan.

Clearly there is a great deal of noisy fluctuatainthe range measurements. Also, the
underlying outline which we can see in the supeosag scans is complex enough to

defy simple geometric models.
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Figure 34: Vegetation

6.1.3.6 Weak returns

Some objects have very poor reflectivity at therarédd frequency where the SICK

scanner operates. Figure 35 shows an examplecaf ¢at is almost invisible to the

scanner. During the 10 seconds that we drive lgyame able to build up a reasonably
complete idea of the car (small dots), appareilgdly from specular glints. However,

on any given scan, very little of the car is visiblin this particular single scan, we are
mainly seeing inside the wheel wells (oblong ar@&sa inside outline box.) Evidently

the dirt inside the wheel well is a better refled¢tan the paint.
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Figure 35: Weak returns

6.1.3.7 Clutter

Another cause of unclear object outlines is cluttdren objects are close together. In
this case, it isn't clear whether to segment thia @ one or two objects. If the

segmentation flips between one and two objects, thiuses apparent shape change.
Clutter can also cause spurious disappearanceaKstr for example when a pedestrian

moves close to a wall, and appears to merge wathvidl.

6.1.4 Tracker structure and algorithms

These are the major parts of the tracker:

- Segmentation: group scanner points according talwbibject they are part of.

- Feature extraction: fit line and corner features.

- Prior noise model: assign feature error covariansgsy a measurement error model.
- Data association: find the existing track corresjpog to each new segment, creating

a new track if there is none.
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- Dynamic model and Kalman filter: determine velgciacceleration and turn rate
from the raw position measurements.

- Track evaluation: assess the validity of the dymasstimate and see if the track
appears to be moving. Check how well the estifjatedicts” the measured past

positions when time is reversed.

There are 60 numeric parameters used by the tradkar concreteness and conciseness,
we will refer to the specific numeric values thavl been empirically tuned for our
particular scanner and application, rather tharpacameter names.  Generally the
parameter values are not all that sensitive, butbfst performance with a different

scanner or application, different values would bedu

Also, since the source code is available and wathroented, we will avoid in-depth
discussion of implementation details better reathfthe source. In particular, although
efficiency is one of the important characteristiésthe tracker, we won't do much in-
depth discussion of performance-related issues.

One performance consideration is worth discussegabse it affects the structure of the
algorithm, especially in the segmentation and featextraction steps. We have
exploited two major geometric constraints that cdram the use of a single scanner:

- Given an assumption that all corners are 90 degat@sy time it is possible to see at
most two sides and three corners of an object.ta Bauctures are designed for this
fixed number of linear features, rather than antratty number. This also simplifies
the feature correspondence problem in data asswtiat

- In various places we exploit the assumption thatitinerent azimuth ordering in the

scanner output is also an ordering of consecutiwet® on the object surface.
Both of these assumptions break down if there isentban one scanner. We have

demonstrated one way to use multiple scanners:ecb@a¥l the scan points into a point

cloud in Cartesian coordinates, and then convett paint back to polar coordinates of a
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single “virtual scanner.” Although not a greatwan, it does show that the limitation to

a single scanner can be relaxed.

6.1.4.1 Segmentation

Segmentation takes the list of 181 range and ahirpaints returned by the scanner and
partitions it into sublists of contiguous pointd.wo neighboring points are contiguous if
the separation is less than 0.8 meters. After sagation, the points are converted into a
non-moving Cartesian coordinate system by transfggnout the effects of the known

motion of the scanner.

During segmentation we also classify each poinb@dudedor normal. A point is

occluded if an adjacent point in the scan is inifeer@nt segment and in front of this

point, or if it is the first or last point in thean. This flag has two uses:

- When an occluded point appears at the boundarg obgect, we consider this to be a
false boundary (the featureviague)

« We only count non-occluded points when determiriinigere enough points to create

a new track or if the point density is high enofiggha segment to be compact.

In segmentation, missing range returns are tresgqabints at maximum distance, and are
not assigned to any segment. |If there is a largrigh dropout in the middle of an

object, this splits the object into two segments.

6.1.4.2 Linear feature extraction

For each segment, we do a least-squares fit teeaald to a right-angle corner. Since the
stability of feature locations is crucial for acate velocity measurement, there are two
refinements to the basic least-squares fit:

- Points are weighted proportional to their sepanaéitong the line. Since some parts
of the object may be much closer than others, thatplensity along the object
contour can vary a great deal. This weightinguced problems with rounded
corners that have high point density causing the fit to rotate away from more

distant points that actually contain more inforroatiabout the overall rectangular
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shape approximation.

« The 20% of points with worst unweighted fit are cdigled, and then we refit.
Although this reduces sensitivity to outliers framy source, the scanner has little
intrinsic noise, so the effect is mainly on realjecb features that violate the
rectangular model, notably rounded corners and Wwineis.

Because conceptually both the point spacing (distasmlong the line) and fit error

(distance normal to the line) depend on the linei¢tvis what we are trying to find in the

first place) we use an iterative approximationacltline fit requires three least-squares

fits:

- An equal-weight least-squares fit of all the poimghe segment, used to determine
the point spacing for weighting.

- A trial weighted fit, used to determine the outipeints.

- The final weighted fit.

The position of each line end-point is determingddking the ending point in the input

points and finding the closest point lying on thted line.

6.1.4.2.1 Corner fitting

Corner fitting is done after fitting as a line. hi is a somewhat degenerate case of a
polyline simplification algorithm. We split theomt list in two at the knuckle point: the
point farthest from the line fit. The geometrigdibnger side is then fit as a line. Since
we constrain the corner to a right angle, the Isidg fit determines the direction of the
short side. All we need to do is determine thation of the short side, which is done by
taking the mean position along the long side ofsihert-side points. The location of the
corner itself is the intersection of the two sides.

When doing the corner fit, we test for the corneing well-defined (approximately right
angle) by doing an unconstrained linear fit on #hert side, and testing the angle
between the two sides. The angle must be at astegrees away from parallel to be
considered a good fit.
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The corner must also be convex, meaning that tha pb the corner aims toward the
scanner (hence away from the interior of the opaipject.) We impose this restriction
because in practice concave corners only appekarge fixed objects like walls, not on

moving objects.

4 T T T T T

T T
corner fit
scan data points +

meters

Figure 36: Corner fitting

Figure 36is an example of corner fitting in the presenceaher rounding, outliers and

variable point spacing. The fit matches the aVer#line accurately fairly accurately.
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6.1.4.2.2 Shape classification

After fitting and line and corner, each segmemgiven a shape classification:

corner
line

complex

Corner fit mean-squared error less than line fit @ss than 10 cm.
Line fit mean-squared error less than 10cm.
Fall-back shape class for objects with poor lirféar

There are two Boolean shape attributes which are-selependent from the shape-class:

compact

disoriented

Due to the restrictions of single-scanner perspeand 90 degree convex corners, there

Diagonal of bounding box < 0.7 meters and point sdgn> 5
points/meter. The compact criterion is chosen st pedestrians will be
compact (as will lamp-posts, fire hydrants, etBgcause compact objects
are small, we can estimate their velocity reasgnalbturately without
having a good linear fit.

Rotation angle not well defined. True if the limelong side of corner has
less than 6 points, the RMS fit is worse than 4 aenthe line and corner
fit disagree by more than 7 degrees and the chdsssification’s RMS
error is less than 4 times better than the altermat Segments that are
complex or < 0.7 meters diagonal are always diated:

The disoriented attribute is used to determine dretio use the change in
orientation for turn rate estimation. Also, if egment is disoriented and
not compact, then it has a poor linear fit, andaneemore skeptical of the

motion estimate.

is a small fixed set of possible features thatgarsnt can have:

min, max

first, last
corner

center

The two diagonal corners of the bounding Hox world coordinates.
Defined for all shape classes.

End points in a line segment, ends of the two si@scorner segment.
Corner point in a corner segment.

Rough estimate of object center derived from ofbatures. Defined for
all shape classes.
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Figure 37illustrates a segment with all features present.
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Figure 37: Features

6.1.4.3 Feature noise model

We observed earlier that due to the distinct arrgahal range resolution of the scanner,

the shape of the position uncertainty in Cartes@ordinates is strongly asymmetrical.

The Kalman filter used in the tracker uses a sitegismodel of error in the measurement.
If the actual measurement and modeling errors areevand zero-mean, then the Kalman
filter is optimal. In practice, our errors diffgreatly from this ideal, so there is no
theoretical optimality. However inaccurate, in @rdo use the Kalman filter, we must
attempt to capture the measurement error charsiitsrias a two-dimensional position

covariance.

There are two parts of the noise model:gher noise and thadaptivenoise. The prior
noise is determined from the segment points forsngle scan, and is based mainly on
the geometric properties of the scanner. The adapbise is estimated as part of the

filter update, and will be discussed later.
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The prior noise for linear features is computednfreeparate longitudinal and lateral
variances that are then rotated into the world dinates. The lateral variance is 1 cm or

the mean-square line fit error, whichever is gneate

ohject surface point spacing

scanner rays

Figure 38: Incidence angle and point spacing

Geometrically, the longitudinal measurement unagftagoes to infinity as the scanner
ray approaches parallel to the line (see Figurg e to the segmentation algorithm,
the observable inter-point spacing is limited te fegment threshold (0.8 meters.) The

prior longitudinal variance is (0.3 $pacing 2, wherespacingis the maximum inter-

point spacing of the last 7 points at the end eflthe.  Using the actual inter-point
spacing incorporates the geometric angular resolueffect, and also additionally
discriminates against objects with missing reticthee to poor reflectivity.)

If a segment is disoriented, we are unsure of thentation, so also unsure of the
orientation of the measurement error uncertaintythis case we bound the ratio of the
longitudinal and lateral variance to 5 by incregdime lateral variance.

6.1.4.3.1 Vagueline ends

A line-end feature can be markedvague,which means that its longitudinal position is

so poorly determined that the endpoint positionuthdoe regarded as arbitrary by the

6-93



tracker. A vague line end is still usefully lozad laterally, and one end of a line can be

vague when the other end isn't.

Due to shape change and occlusion, it turns ohetorucial to identify situations where
the position of line ends is unreliable. This neesllts in a rather complex decision rule.
A line end is vague if:

- The scanner point defining the endpoint positios wecluded,

- The prior longitudinal error estimate is exceedsd®b or

- The next adjacent point not assigned to this segimeat least 1.2 meters behind the

line. Any intervening no-return points are skipped

Rule 3 has these functions:

- Itis a more precise occluded test in the caseliokavith known orientation.

- It also marks ends as vague when the adjacent poihé next segment falls near the
same line, hence may well be part of the same btiat happened to be segmented
separately due to missing returns.

6.1.4.4 Data association

Data association is the process of determining kvbigrent measurements correspond to
existing tracks. In the context of the long-rargecking literature, our approach is

basically nearest-neighbor. We pick one singlersged in the measurement data which
most closely resembles the prediction and useftindhe new estimate. However, since

each segment has many 2D points, the concept stiftie” is rather complex.

Our first approach to data association used thebowd log-likelihood of the feature
positions as a distance measure, then chose thdiketg segment. However, we found
this approach performed poorly, in that it bothateel bad tracks by associating separate
objects and also caused good tracks to breaktap bbject shape changed too much. To

the human eyeball the errors seemed rather silly.
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6.1.4.4.1 Overlap based association

We now use an approach based primarily on spatiallap between the track and the
measurement data. The concept of overlap-basediassn is simple: given rectangles
representing the outlines of the track and the oreasent, the two are associated if the

outlines overlap.

The actual overlap algorithm is somewhat differamil handles non-rectangular objects
much better. For two objects to overlap, we regjthat at least one actual measurement
point fall inside the track outline, and symmetiligathat when the track's last measured
points are updated for predicted motion, that asti@ne of these predicted points falls
inside the segment's outline. Since the poirgsoarthe edge of the object, we expand
the object outline by 0.8 meters when checkingpitiat overlap. If there is no linear fit
(complex shape class), then we use the bounding box inl foo®rdinates as the object

outline.

This algorithm works well even when a moving trgasses though a concave part of a
large fixed object (wall, etc.) In this case, a@f the wall's points fall inside the track

outline, even though the bounding box for the wadly entirely enclose the track.

6.1.4.4.2 Track splitting and merging

In addition to its robustness, another advantageveflap-based association is that it
leads to a straightforward way of detecting whextks split or merge. In these cases,
overlap does not establish a one-to-one correspaedaetween tracks and segments. |If
a track splits, then there will be two segmentslapping the track. If two tracks merge,

then there will be two tracks overlapping one segme

Actual splitting or merging can happen when pedsasérget into or out of vehicles. In
practice, segmentation errors are the most comraosecof splitting and merging. In the
presence of clutter, an object may appear to §plih or merge with another nearby
object. Missing returns can also create holehémiddle of objects, causing them to

split in two.
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Whatever the cause, it is important to detect winecks merge because it is a common
reason for track disappearance. See sedwank Creation and Deletiomhere we
discuss the “died without offspring” test.

When two tracks join, the ID of the merged trackhist of the older track.

6.1.4.4.3 Maximum closeness:

In addition to split/merge situations, our fairlgrmissive overlap test can also generate
complex overlap relationships when tracks are smapdse together. Since in general
the overlap test may create a many-to-many assmcibetween tracks and segments, we

need a procedure for deciding which particular eission to make.

This discrimination is done based w@aximum closenesahere closeness of a track and

segment is defined as the sum of the reciproctieindividual feature distances. This

differs from the RMS distance in two important ways

- The result is dominated by the best agreeing featunot the worst, so it is not
confused by the gross shape change which happesstvdtks split or merge, and

- The result is not normalized by the number of feggun correspondence. The more
features, the higher the closeness. In a spligesituation, we want to discard the

track or segment with less information.

Tracks are associated from oldest to newest, wiias older tracks preference. A track
may associate with a segment that is not mutuddigest (there may be another newer

track that is closer.)

6.1.4.4.4 Feature correspondence

Once we have decided which track and segment pames we are faced with the
problem offeature correspondencehich features in the track and segment reprebent
same point? Due to our extremely restricted featnodel, this is much simpler than it
might be.
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The only case where features may not correspomdttiiris when associating lines and
corners. This happens when we move around aitobgmetimes being able to see two
sides, sometimes only one. Correct handling of tlase is important because often
visibility of one side of an object will be margindue to shallow gaze angle, and the

segmentation will keep flipping between line andeo.

Often the corner will correspond to one of the endis of the line, but sometimes the
line ends match better onto the ends of the sifléseocorner. We associate the line
with whichever side of the corner is a better dioe@al match, as long as this has less

mismatch than the direct ends-to-ends match.

6.1.4.4.5 Track creation and death

If we fail to associate a measurement segment anthexisting track, then we consider
creating a new track. A new track is created & segment has at least 3 non-occluded

points and is not a line with both ends vague.

If we fail to associate an existing track with amgasurement segment, then we may
delete the track. Tracks are deleted if they heotebeen associated for 10 cycles or the

total number of previous associations, whichevégss.

When a track dies, we report this event, whetherttack merged with another object,
and also whether the track “died without offspringThis is determined by examining
the split-from chain of all currently live trackseeing if the dead track was a parent.
This test is done to support detection of objdutd may still be present but have passed
out of the scanner field of view (pedestrians theate fallen down.) If some track that
split off is still alive, then the split was probgbspurious (due to a segmentation

problem), so there is no real disappearance.

6.1.4.5 Track state and dynamic model

The basic dynamic model is constant accelerati@hcamstant turn rate. There are nine

state variables: XY incremental motion, XY velog¢iiyY acceleration, position theta,
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heading theta and angular velocity. The firststates estimate translational motion and
the last three estimate heading and turn ratel. ofAhe translational states are expressed
in the fixed world coordinate system. The trackr@amental motion is initially zero, and
is an estimate of the net XY motion since traclatos.

Using a constrained vehicle dynamic model suchhasicycle model, the velocity and

acceleration are single-dimensional when expressdte track's moving coordinates.
We implement a similar effect by rotating the velp@and acceleration by the predicted
incremental rotation on each update cycle. Howewer maintain a 2D velocity and

acceleration, so our model allows for velocity auteleration normal to the vehicle
heading (in addition to the apparent acceleratios td turning.) While this can happen
in a skidding vehicle, this is not really relevamtour application. The interpretation of
the 2D acceleration is somewhat non-obvious, &sthe residual acceleration after the

effect of turning has been removed.

There are actually separate linear Kalman filtess linear estimation (6 state) and
rotational estimation (3 state.) In the future plan to investigate a combined 7 state
nonlinear filter which would simultaneously estimahe linear and rotational motion

without unnecessary degrees of freedom.

The dynamic model for compact objects (such as gigdas) is modified by forcing

acceleration to zero. Pedestrians don't spend ntiuod in a constant acceleration
regime, so predicting parabolic trajectories daasi@ke sense. We do however predict
pedestrian “turn rate” as in the bicycle model. odgh pedestrians don't really turn on
constant curvature paths, they don't normally abruptly either, so this seems to have

some value.

6.1.4.5.1 Rotational estimation

Additional complexity for rotational estimation cem from the fact that we can
sometimes (see&shape Classificatigndirectly measure vehicle heading (orientation
theta), and thus fairly directly measure the tuater For other tracks, the only way to
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discern the turn rate is to observe the changkeardirection of velocity (heading theta)

over time.

Due to the kinematics of the bicycle model, thetantaneous velocity of a turning
vehicle is not normal to the front or back surfadethe vehicle. Fortunately, we are
really mainly interested in estimating the angwlalocity, not the heading, and the time
rate of change of the velocity vector is the sasiéoathe orientation of any part of the

vehicle outline.

However, we run into problems when we are forcedswostch between these two
orientation estimates (when thigsoriented flag changes.) This can create spurious
jumps in position that would be interpreted as #agwelocity. By maintaining separate

estimates for these two different headings we atloglconfusion.

6.1.4.5.2 Tracking features

Because we have up to three features for eachaithn &ack, we have a data fusion
problem. How do we combine the motion estimatemfthe separate features into one
track motion estimate? Fortunately, the Kalmateffiprovides a natural framework for
data fusion. Each feature can be considered aperdlent measurement of the position.
Because each feature has its own error model, #h@ah filter weights the contribution

of each feature appropriately.

One complication is that the features do not hdne dame position because they are
different points on the object. To allow motiors@ssment of individual features, we
need to know the previous position of each featurkis is done by a modified Kalman
filter structure. Each feature has an indepengdesition, but shares its motion with the
track. The position innovation is determined biptsacting the old feature position and
the new measurement. The Kalman gain is the cadpusing the feature's position
noise and the track state covariance. The pog@hof the track state change is applied

to both the feature position and the track incretiadenotion.
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Vague line ends are tracked specially. Althouglguealine ends are given a large
longitudinal position covariance, this does notseaa sufficiently profound suppression
of spurious longitudinal motion.  There is larggid motion of vague line ends in
common situations such as a side of an object begprisible when we round the
corner. To completely suppress this motion, we zbe longitudinal component of
velocity and acceleration state change for vagoe énds. We allow the incremental
motion to be affected so that huge jumps in lomyital position can still cause the
association to fail (due to excess state changealabbis distance.)

Which features contribute to the motion estimateetiels on the shape classification. Of
course, features not present can't contribute s bbsiously, the motion of the bounding
box corners only contributes to the motion estinvaten the shape classaemplex We

track the position of the bounds regardless, sb\ahave a valid feature position and

noise estimate available if the shape switche®toplex

6.1.4.5.3 Track center

We maintain a crude estimate of the track centdihis is done via the center pseudo-
feature. During shape classification, we comphte center as the midpoint of the
object. For center finding on linear objects, weead vague sides to be at least 2 meters

long. This can be regarded as a prior object mitdeleverything is a 2 meter square.

Because this is a very low quality estimate, anthigny case contains no additional
motion information not present in the other feasyuithe motion of the center feature is
measured using a separate Kalman filter. Thissgs@me smoothing of the center

position, while avoiding any interaction with thet@al motion estimate.

6.1.4.5.4 Noise adaptation

We make use of measurement noise adaptation tmagstithe position covariance for
each feature. The primary benefit of measuremeisenadaptation is in its effect on the
data-fusion aspect of the Kalman filter: noisy teats contribute less to the motion

estimate. This is valuable because some featmeasuch noisier than others.
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The noise is estimated from the statistics of theasarement residue, which is the
disagreement between the predicted feature posatimhthe measured one. (With our

dynamic model, the residue is the same as theréeptsition innovation.)

The covariance of the residue is an estimate opdse&tion measurement covariance.

In theory, for computing an adaptive measuremeimgenove should reduce the noise
residue by the estimate covariance to representceindéribution to the measurement
residue from the estimate uncertainty. Howeveis tisks creating small or even
negative measurement noise when the estimate eocariis too high. Since we are
knowingly inflating process and measurement noisddal with time-varying behavior

and modeling error, subtracting out the state camae would to cause problems.

If the mean of the residue is not nearly zero, thdicates a non-zero-mean error. In
some applications it would be appropriate to swbtraut this mean from the
measurement; in our case there is no independadurement of the feature position, so
a significant mean error means that we are nokitigcproperly. If the residue mean
exceeds 10 cm, we reset the feature position flarctirrent measurement and clear the

residue mean to zero.

The need for this resetting comes from a sort stiaipility that the noise-adaptive tracker
exhibits in the presence of time-varying non-zemam disturbances. In short, if a
feature position drifts around, and no compensatiagk velocity is inferred (perhaps

due to data fusion correctly rejecting spuriousiomt then the measurement covariance
for that feature becomes inflated, and this furitiegrades the tracking performance for
that feature. Our response in this situation ialkow the feature to be basically ignored
by fusion, but to keep the feature position apprately correct by resetting the position

when the residue mean becomes too large.
Residue update has two phases: during track stasepcompute recursive mean and

covariance with equal sample weighting. After 8e2onds, we switch to a first order

response (exponential decay) with 0.3 second tiorestant. Initially, the sample is
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small, so the estimate is unreliable. For the fis cycles, we use only the prior noise
estimate. After 15 cycles, we use the sum of #s&due covariance angr{or_ noise*
0.57). The prior noise then serves as a lowenthan the adaptive noise. This lower
bound is particularly valuable in cases where thermoise is high (like vague line

ends.)

6.1.4.5.5 Improving the Kalman filter for non-Gaussian errors

The Kalman filter is optimal when the measurementreand process disturbance are
Gaussian. One of the characteristics of the Ganssiits light tails: it is very unlikely
that a result will be very far from the mean. Umidioately, when feature tracking breaks
down, it can produce outlier measurements which edfectively impossible in the

Gaussian model.

Since a Kalman filter doesn't suppress these gltehis common to extend the Kalman
filter by limiting the magnitude of outlier measuorents or discarding them. We make
use of this approach in several places:

- If the change in track state due to a measurensetaoi incredible, then we discard
the measurement. This is done when the Mahalardibiance of the state change
with respect to the estimate covariance exceeds Before discarding the
measurement, we see if we can get a reasonableia@gso by resetting a subset of
the features. We reset any features that contribstate change with Mahalanobis >
4 by setting their position to the measurementpingr their contribution to the
innovation.

- The time rate of changeal/(lt) of velocity, acceleration and angular velocity are
limited to physically plausible values: 9.8 metsesl, 5 meters/séc 60 degrees/séc
Note that these limits are applied to the incremestate change, not just to the
output estimate. For example, the accelerationt lis applied not only to the
acceleration estimate, but (more importantly) asthe change in velocity estimate
on any given update cycle. This prevents imposgilohps in position from causing
big velocity jumps.

- The measurement of heading from feature orientdtolentation theta) is prone to
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jump when there is a track merge/split or the shapssification changes. If the
innovation exceeds 7 degrees in this situatiom thie reset the position to the new

measurement.

6.1.4.5.6 Track startup

When a track is newly created, the dynamics arenownk, so we assume that the
velocity and acceleration are zero. If a tracktsmff of an existing track, we initialize
the velocity and acceleration to the one for thistag track, but still leave the estimate
covariance at the default (large) value.

Commonly tracks will come into range already rapiaioving, so this prior velocity can
be significantly in error. It takes some time tbe measurement to settle to the correct
value, anddv/dtlimiting prolongs this. Duringlv/dtlimiting we hold acceleration fixed,
as otherwise the acceleration slews wildly becabhseKalman filter feedback loop is
open. We also modify the Kalman filter update battthe velocity covariance is

effectively fixed duringdv/dtlimiting, preventing spurious covariance convergence.

The physicabdv/dtlimit does not apply during track startup becaumsg Yelocity change

is not a physical acceleration. As a heuristie, iwcrease thelv/dt limit when the
velocity covariance is high. We allow the veloditychange by 12 sigmas per second if
this is higher than the physical limit.

6.1.4.5.7 Information increment test

When attempting data association of a segment eauk,twe find theinformation
increment which is a measure of how much the track wasuamited by this
measurement. If the information increment is ltdven the track is not responding to the
measurement because the measurement is consideredisy relative to how certain we
think we are of the current state. In this cade, tracker is not actually tracking
anything, just speculating based on past data.

A common problem situation is that a track may gjeato a line with both ends vague.
In this case, the track is localized in one dimttonly, and the longitudinal velocity is
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unmeasured, which can lead to unacceptable spumeleities. Low information
increment can also happen if we reset all of tlauies in a track or when a track is very

noisy (via noise adaptation.)

To keep the track from coasting indefinitely, wé flae association when the information
increment is below 0.04 (response time constan?sotycles.) Tracks that are not
associated for 10 cycles are deleted. If theeedme-to-one overlap relationship, then we
pretend not to associate for purposes of the delégést, but actually do associate. This
helps to keep good tracks tracking properly inagititns where the association is clear but

the information is momentarily bad.

Though we call this "information” increment, thengautation is really based on the
covariance. This mimics the computation of thenkah gain, which is what actually
determines the response speed of the filterw, i§ an eigenvalue of the covariance after
the measurement, and is the eigenvalue before update, then the infeement is the
mean ofw. /w, - 1 for the two eigenvalues. The eigenvalues samted so that we

compare eigenvalues of similar magnitude.

The assumption is that the eigenvectors are Gtienged by any one measurement cycle,
so the change in the sorted eigenvalues reprefenthange in uncertainty on each axis
in the rotated (uncorrelated) coordinates. Thsuias that the track is well localized in

two dimensions.

6.1.4.6 Track evaluation

The tracker outputs two flags for each track toiaithe interpretation of the result:
Valid true when the motion estimate is believed to beiate
moving true if there is compelling evidence that the tracikoving

Spurious velocities on fixed objects can easilyseafialse collision warnings. Since true

imminent collisions are very rare, and fixed olgeate very common, we must drive
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down the reporting of false velocities on fixedaitis to a very low level in order to get

an acceptable rate of false alarms.

To achieve this we have developed an additionaluatian procedure that operates
independently of the Kalman filter. We collect thst 35 segments (raw measurements)
associated with each track, then check how wellttaek path matches up with the

measurements if we project it backward in time.

If our dynamic model adequately describes the madind the estimated parameters are
close, then the paths should agree well. If thecmis poor, then there is either
unmodeled disturbance (rapid change in acceleratidarn rate), or there is a tracking
failure due to problems in feature extraction, etc.

We accumulate two different streams of informataout the difference between the

back-predicted location and measured location oksponding features:

1.The mean-square Mahalanobis distance accordipgdoposition error. This is used
to evaluate moving and valid.

2.The Euclidean distance normalized by the elapiseel from the measurement to now.
The mean is a velocity correction and the covagaiscan estimate of the velocity
covariance. The velocity correction is added ®® dhtput velocity. If the covariance

is bigger than Kalman filter covariance, then ibigput instead.

We also find the sum of the position informationr fdl features in the history that
contributed to the distance estimate. This is usedetermine whether the history has
adequate quality to localize the track in two disiens. The smaller eigenvalue of the

information matrix must be greater than 35 méters

This information eigenvalue is also used to noreeathe Mahalanobis distance back into
a nominal length, which is then compared to a tiokesfor the moving/valid test. For a
track to be marked valid, the distance must be tlegs 5 cm, and after that must stay

below 15cm to remain valid. Though the units aetars, the physical interpretation is

6-105



obscure. The empirically chosen values seem nadr® if regarded as an RMS fit error
in meters. The advantage of this distance measwgea simple RMS distance is that it
takes into consideration the asymmetric prior edistributions generated by the position

measurement model.

We also compare the past measurements to the ypdthresis that we are not moving at
all. This is done using the same comparison pruregcbut with no projected motion.

We then compare the matching error of the two Hygses. For the track to be moving
and valid, the matching error of the moving hypsthenust be 4 times less than that of
the fixed hypothesis. This rejects situations rehibere is equal evidence for moving

and non-moving because one feature moves and arteen't.

In order to minimize the effect of noisy variatidhge results of the history analysis are

filtered using an order 21 median filter beforengeiested against the above limits.

Because the history-based validation is fairly cataponally expensive (about 250

microseconds per track on 1.2 GHz PC), we have seseeral optimizations:

1.0nly do history test on apparently moving trackstrack is apparently moving if it has
a feature that has been tracked for at least 1Eegythe speed is greater than 0.75
meters/sec, Mahalanobis distance of the velocitynfrzero exceeds 6. There is
hysteresis in this test so that tracks tend to staying once they are initially moving.
Also, if a track is a line with two vague ends tas not previously moving, then
only the lateral component of the velocity is caesed.

2.0nly use the oldest 1/3 of the history data,hes ¢ontains most of the information
about velocity error.

3.Limit the number of tracks validated on any texc&ycle to 4. There are seldom this
many moving tracks, so this limit is rarely exceaddelhe purpose is to bound the

runtime of a single tracker iteration.
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6.1.5 Evaluation

Linear feature tracking has been tested primaslypat of the larger collision avoidance
system, with the main tuning criterion being mirging the number of false alarms due
to spurious motion. However, there are a numbewxayfs that we can characterize the
performance of the tracker. First, we can vigugtamine the output to get sense of the
noise and response time of the output. Figurse®8vs the output for a car that comes

into view turning a corner, then drives straight.
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Figure 39: Tracker dynamics

The track is flagged as moving and valid at 4.3osds. After that time, the noise
fluctuations in the velocity seem to be less thah Meters/sec peak-to-peak. The

acceleration and turn rate (v_theta) are fairly atinpbut clearly have a lot of delay.
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The vehicle is probably near peak turn rate attime that the track is detected as
moving, but the peak in output turn rate happenmmat a second later.

The acceleration estimate is also responding tdotndrequency change in velocity, but

slowly. At around 5.7 seconds it appears thataiteeleration is near zero. The output
estimate is dropping fairly rapidly, but doesn'tkaat to zero during the apparent low

acceleration period.
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-
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Figure 40: Track history matching

The history-based track evaluation provides anoth&y to investigate tracker
performance. By using the current motion estintatg@redict the past position, then
comparing with the actual measurements, we caa gehse of how well the tracker can

predict motion over short periods of time (0.3 s&i)

Though the idea of comparing the prediction to actneasurements is a good way to
verify the tracker performance, this particularadest not very good evidence because of
the short time scale (where the effect of accataratnd turn rate error is slight) and

because the velocity correction is calculated ftbra very data so that it minimizes the

error. It would be much more convincing to shtnattwe can predict the future.
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We can see that there is very good agreement @igrgsshowing the velocity estimate
is fairly accurate. Also, we can see that theitgrapproximately matches up as well.
Slight acceleration error is visible in the middiethe sequence (the first order velocity

correction forces both ends to line up.)

6.1.6 Summary

We have found that the linear feature tracker comedbi with history-based track
validation is able to generate reasonably accuvatecity estimates for cars and
pedestrians in a cluttered urban environment, wdiiteng a low rate of spurious motion
indications that can cause false alarms. These fhrms are discussed in detail in the
Sections 6.3 titled SCWS Warning Algorithm and Balse Alarms. The estimation of
acceleration and turn rate appears to improve giedi of future positions, but the
prediction would be significantly better if the pesise time could be improved.

We also have enough experience in working on thisqular problem to be able to state
with some confidence that any significantly sim@eproach will not be able to achieve
comparably low levels of false motion estimates.héW the scanner is in motion, the
apparent shape of objects changes, and fairly stiqdiied measures are required to

determine that this is not actual motion.

The computational efficiency is significantly bettean some of our previous attempts at

solving this problem. No large data structureshsas maps are used. The average time
to process one scan on a 1.2 GHz PC is 4 millisgssconThe code size is about 7000

lines of C++, and is written at a fairly high lew& abstraction, so considerable further

performance gains could likely be achieved if neagg

6.2. FCWS Warning Algorithm
From 2001 to August 2003, three generations of imgrialgorithms were developed,

with each later version being an improvement on ghevious version. The current
version is the third generation algorithm, whichs handergone further improvements

based on data analysis and driver feedback sinpgei@ber 2003. The features and
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improvements of the third generation of algorithra summarized in the following table

and the five points below. The improvements to ttiied generation algorithm and its

modification in order to process radar data am@dhiced later in the chapter.

Object ] o Finite-size- | Threat
Bus model Driver Coriolis effect )
model object effect | measure
15t TTC
] Free- No No No No
algorithm . . . . ) . . . .| (Time-to-
moving consideration| consideration | consideration | consideration
(2001) Collision)
2 Empirical Decoupling bus Speed-
] Non- Non- ) No
algorithm ) ) TTC motion  from ) | dependent
holonomic | holonomic consideration
(2002) threshold sensor data TTC
Free-
moving
Delayed-
(stopped . .
o filter which
g or Empirical )
3 ) ) Decoupling busg can well )
) creeping | Non- required ) ) Required
algorithm ) ] motion  from| estimate _
targets) +| holonomic deceleration ) deceleration
(2003) sensor data acceleration
non- threshold
) from range
holonomic
) data
(moving
targets)

Table 18. Features and improvements of three gendians of FCWS algorithms

The main features of the third generation algoritma described in the following five

points:

1. Model: Moving targets are modeled with non-holonongbnstraints, so that

heading and yaw-rate can be more precisely estim&t@ stopped and creeping

targets a free-moving model is used because maliregtion can not be detected

from short-time displacement. A free-moving modelai 2D kinematic model

based on Newton’s laws of motion. A non-holonondostraint means that lateral

slide is prohibited.
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2. Driver’'s role: It is taken into account that thesbdriver is working in parallel
with FCWS, and responsible for fusing warning infiation with his/her own
perception and decision making. Empirical data werelyzed to derive
thresholds from the driver’'s behavioral data sd tha FCWS can better match
the driver’s normal operation.

3. Coriolis effect: The algorithm decouples the busistion from sensor
observations so that the Coriolis effect can beniakted. The Coriolis effect
introduces an imaginary component of motion duth&rotating of the sensor’'s
coordinate frame of reference.

4. Finite-size-object effect: The finite-size effentroduces ranging error due to the
size of vehicle bodies. The “delayed filter” caritbeestimate target velocity and
acceleration by delaying the update of the modéhtarove the displacement-to-
error (signal-to-noise) ratio that is usually inmeal by finite-size effect.

5. Threat measure: Required deceleration is used Eatthmeasure. Required
deceleration is the minimum deceleration that sthdag applied to the bus to
avoid an imminent collision with a preceding objetTC (Time-to-Collision),
speed-dependent TTC (which is a look-up-table opigoal TTC derived from
real data indexed by object speed and bus speed also tried as threat
measures, but required deceleration is more natutakms of matching with the
driver’'s operation. It is the delayed filter whiohakes it possible to utilize the

required deceleration as the threat measure.

6.2.1 FCWS Algorithm structure

The structure of the warning algorithm is shownolel The main data structure-track
file, the tracking and warning detection algorithne described in detail at the end of this

section.
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Figure 41 FCWS Algorithm structure

6.2.2 FCWS Data structure

6.2.2.1 Track file structure

A track file is a list of tracks being processedck track is a correlation and refinement
of the time sequence of observations of an obgdtKget). An ID indexes each track
using the name (usually an integer) for an objadeu tracking. An object under tracking
is described by the object state in the track @lbject state is a combination of kinematic

states and track properties of an object.
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Figure 42 FCWS Track file structure

Latest
data
head

The designed track file consists of two major mgmmirffers: track head buffer and data

buffer. Both are declared as linear arrays butoaganized in linked-lists. Every track

head cell belongs to one of the following five lsve

LEVEL_DISUSE: currently not in use;
LEVEL_INITIAL: initial tracks;
LEVEL_TENTATIVE: tentative tracks;
LEVEL_PREMTURE: premature tracks;
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LEVEL_FIRM: firm tracks.
Each level of track heads is organized as a dduiked list. Each track head is then
linked to a double-linked list of historical dath the track. The whole data buffer is
organized as a circular queue (or equivalentlyrstfin-First-Out (FIFO)). If the head of
the queue reaches the tail, the oldest cells deased from double-links of tracks to
provide memory for new data. New data collectedhi latest snapshot are saved in a

double-linked list. The structure of track fileilisistrated in the above picture.

6.2.2.1.1 Track head data structure

One key element of a track file is the data stmgctar storing track information. This is
defined in the TRACK_HEAD structure;

typedef struct
{

int Prev,ID,Next,Count,Level;
OBJECT_STATES Pred;
} TRACK_HEAD;

where ID is the index of a track, Pred is the prtsdl state.

6.2.2.1.2 Object state data structure

Another key element of a track file is the dataicnre for storing data of an object in
one snapshot. This is defined in the OBJECT_STASESR ture:

typedef struct {
double t{TOTAL_OBJST_T_MBRS];

int pntr[TOTAL_OBJST_PNTR_MBRS];
int stat{[TOTAL_OBJST_STAT_MBRS];
int iobsv[TOTAL_OBJST_IOBSV_MBRS];

double  dobsv[TOTAL_OBJST_DOBSV_MBRS];
double parTOTAL_OBJST_PAR_MBRS];
} OBJECT_STATES;

where t[] are time members (e.g. time of avail&pitf data and estimated time
for filtering output considering the delays); phtare pointer members for data
structure manipulation (e.g. building up linkedtd)s iobsv[] and dobsv[] are
observation members for raw data storage; par[¢ emtimated motion states
members for refined parameters storage; the iderstiin brackets are constants.
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This structure is easily extendable. The usageehbers is defined in the program and

is subject to change. Currently the constants are:

TOTAL_OBJST_T_MBRS =2;
TOTAL_OBJST_PNTR_MBRS = 16;
TOTAL_OBJST_STAT_MBRS =2;
TOTAL_OBJST_IOBSV_MBRS = 10;
TOTAL_OBJST_DOBSV_MBRS = 10;
TOTAL_OBJST_PAR_MBRS = 10;

6.2.2.1.3 Linked lists of tracks

Tracks are categorized into four levels: initightative, premature and firm (see section
6.2.3.3 and 6.2.6 for details of these levels).hHatel of tracks is organized in a double-
linked list. The sub-routine “ChangeTrackLevel(Ancmove a track from one level to
another. Upon initialization, all track heads arg ;m “disuse” category. Sub-routine
“FreeTrack()” can move a track from any level teutie.

6.2.2.1.4 Linked lists of track histories

The historical data of tracks are built in doublékéd lists. Each node is an
OBJECT_STATES structure. The following figure shawvypical linked list.

TRACKHEAD
Newer tracke » PREV NEXT

A

» Older track

ID, Level,Count

OBJECTSTATE
L1+ PREV | NEXT [——
PREDICTION Insert point
of new data
DATA [#----- » DATA [¢----- » DATA
Oldest Latest

Figure 43 Linked list of tracks and historical data

where ID of the track is saved in DATA set of eacile.
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Sub-routine “AssignData2Track()” and “FreeHistotizata()” can add a data cell into or

remove a data cell from the historical data list.

6.2.2.1.5 Object state FIFO buffer

The object state buffer is a FIFO structure. Eadhyas an OBJECT_STATES structure.
The head pointer of the FIFO is the “LatestData dHed@here is no tail pointer. Total
number of targets detected in the latest snapstsaivied in LatestData_Total.

Upon initialization, each entry of the FIFO is ieded. LatestData Head is set to -1.
LatestData Total is set O.

TOTAL_ID

[ N e I e N B

f

LatestData Head = -1

LatestData_Total =0
Object state buffer initialization

When new observations come in, they are going tpushed into the FIFO. The old

entries that are going to be replaced are released

TOTAL_ID

4

LatestData_Total
LatestData_Head

Object state buffer update

When an old entry is going to be released, itsiptsventry’s pointer to the next entry
(the one that is going to be released) is set thINWVhen a new entry is assigned to a
track, the pointer in the track is updated to peanthe latest entry, and the former no.1
entry becomes thé'®entry.
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Sub-routine “NewSensorMeasurement()” can put nems@emeasurements into object

state buffer.

6.2.2.1.6 Host-vehicle state structure
Host-vehicle data are saved in a separate dasteu It is defined in “HOST_STATE™:

typedef struct

{
OBJECT_STATES fifo[HOST_BUFFER_LENGTH];

int LatestData_Head,;
int LatestData_Total;
int Ready;

} HOST_STATE;

Constant HOST_BUFFER_LENGTH is currently 10. Th&adsructure is organized as a
FIFO very similar to the object state buffer. Tlaiable “Ready” is used to indicate that
the buffer is filled with data.

6.2.2.2 Variable allocation

It is important to note that data are saved in GBDESTATE structure. Variable

allocations of host vehicle and objects are difiere

Memory Variable Comment

dobsv[0] v speed measurement

dobsv[l] « yaw-rate measurement

par[0O] X X position in ground frame of reference
par[1] y y position in ground frame of reference
par[2] v forward speed

par[3] W] yaw-rate

par[4] A Heading

par[5] al forward acceleration

par[6] Aw angle acceleration

par[7] CosT cosine of rotation angle

par[8] SinT sine of rotation angle

Table 19. FCWS Host vehicle state variable allocatio
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Memory Variable Comment

dobsv[0] X decoupled x position in ground frame of reference
dobsv[l] ¥y decoupled y position in ground frame of reference
dobsv[2] L Lateral position measurement

dobsv[3] R Longitudinal position measurement

par[O] X X position in ground frame of reference

par[1] Y y position in ground frame of reference

par[2] VX X component of velocity

par[3] vy y component of velocity

par[4] \% forward speed

par[5] A heading

par[6] Al forward acceleration

par[7] N yaw-rate

par[8] CosT cosine of heading angle

par[9] SinT sine of heading angle

Table 20. FCWS Object state variable allocation

6.2.3 FCWS Tracking algorithm

Data association for tracking is the process tcerdd@he the correlation between
observation-track pairs, i.e. to assign observatimnexisting tracks, update them and
extend the tracks. To reduce computations, dataces®n is usually done in two steps:
gating and assignment. Gating is a coarse assmtiptocess, which removes unlikely

correlations. Assignment is a fine association @sscwhich determines the correlations.

6.2.3.1 Association metrics

An association metric is a measure of distancesvd®mt observation-track or

observation-observation pairs. An association matrust satisfy the following three

criteria:

Distinguishability Given any two entitiesa and b, the distance between them must
satisfy
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d(a,b)=0

d(a,b)=0 = a=b

SymmetryGiven any two entitiea andb, the distance between them must satisfy
d(a,b)=d(b,a);

Triangle Inequality Given any three entities b andc, the distances between them must
satisfy

d(a,b)+d(b,c)=d(a,c);

The normal distance measure in 2D spagg (s:

d(a,b)=[a=b/=/(x, = %) + (¥, - v, )’

The corresponding gate is a circle:

J =% ) +(y, -y, )* =R, Ris the radius of the gate.

Another distance measure in 2D space is:
d(a,b) = maxx, =}y, = vl
where (x,,y,) and (x,,y,) are coordinates of entities and b in 2D space. The

properties of absolute value operation immediaselysfy criteria 1 and 2. To prove that
d(a, b) is a valid distance measure, we only need tofywehe triangle inequality.
Because

mafx, =}, = vol 2 x, =%

max{x, = x.|[% = Yol %, = x|

hence,

ma>{|xa ~ X} |Ya = yb|}+ ma>{ij =X} |¥p = yc|} 2 (X, = % | +[% =X 2 [%, =X/

and similarly
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max(x, = )Y, = Yol + maxlx, =% vo = ol 2[va = vl +[%6 = Vel 2|¥a - Ve
we then have

maxx, =%}y, = vl + max{x, = x|y, = e} = max}x, = x| |y, - v}
that is

d(a,b)+d(b,c)=d(a,c).

The corresponding gate is a square:

ma>{|xa ~ %o} |Ya = yb|} =L/2, L is the side length of the square.

L/2

An even simpler distance measure in 2D space is:
d(a,b) =[x, =%, *[ya = V|
The corresponding gate is a square rotatead b4 :

|xa—xb|+|ya—yb|: L/2.

The latter two measures are computationally simplest appropriate for gating. The
former is more precise and appropriate for assigiime
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6.2.3.2 Data association

6.2.3.2.1 Gating

Gating is the process prior to assignment to remonkkely correlations between

observation-track pairs.

First of all, we calculate the distances betweereokation-track pairs using simpler

distance measures, which form a matrix.

Obser- Tracks

vations 1 e K mmmmmmme K
1 |da1y - d(1,K)
n | d(n.Y :
N |d(N1)  --=-=-----m--- d(N,K)

where K is the total number of tracks, N is thattoumber of observationsl,(n, k) is the

distance between observatiomand trackk.

For an observation-track pa(in, k), usen O k to denote the relationship that observation

n is inside the gate of tradk usen T k to denote the relationship that observatmis

outside the gate of tradk

Gating is a binary hypothesis-testing process.tWoehypotheses are:

nOk
nOk

HO
Hl

The gating criteria are:

(

NV S

d(n, o,+to,0,
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whereT is the time from last update of the track to thmment of observatiork denotes
the prediction of the track to the moment of obagon, o is the range error threshold,
o, is the speed error threshold. Temporary settiighethresholds arez; =3m, o,
for firm, premature, tentative and initial trackee ®m/s, 8m/s, 15m/s and 30m/s

respectively. The relationship among these threlshcdn be seen below.
A
y

v

k X

Firm
Extende
Tentative

New

6.2.3.2.2 Assignment

One observation may fall in the gates of multipbecks. Multiple observations may fall
in the same gate of a track. Assignment is thega®d¢o resolve the ambiguities. Co-
existent tracks may be at different tracking levélee tracking levels, from lower to
higher, are initial, tentative, premature and fiffhese levels also represent the growing-

up stages of tracks.

To simplify the assignment process, we make tHewahg assumptions:

1. Higher-level priority if an observation can be assigned to multiplekisaat
different stages, higher level tracks should begikigher priority.

2. Higher-level-track uniquenessf an observation is assigned to a higher-than-
initial-level track, neither should it be assignaghin to any lower-level tracks,
nor should it be assigned to another same-levek;tra

3. Initial track non-uniquenessf an observation is not assigned to any higeeel
track, it may be assigned to multiple initial tragk

4. Observation non-uniguenessiultiple observations may be assigned to the same

track.
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5. False alarm ignoreif an observation cannot be assigned to anyiegistacks, it
should be set as the start point of an initialkrac other words, it should not be
treated as a false alarm anyway.

The assignment criterion is nearest neighbor:

For observatiom and trackk 0 K , whereK is the set of tracks of the same level all with

n falling in their gates, if

A

0k OK, ‘n—l%K z‘n—k

then we assigm to k, and trackk is called the nearest neighbor of observatotse
n= k to denote the assignment of observatida trackk. The assignment criterion can

be expressed as:

if ‘n—lz },thenn:>k.

= min{‘n -k
nOkg

The association process begins with firm tracks@odeeds to lower levels step by step.

6.2.3.2.3 Observation to firm track association

For a firm track, the prediction algorithm is desed in section 6.2.6.2.5.

For an observation-firm track p&in, k), if the following conditions are satisfied:

n 0 k (gating),

‘n - ;2\ = mw{‘n -k, ‘} k, are firm tracks.

thenn= k, andn is removed from observation list.

6.2.3.2.4 Observation to premature track association

For a premature track, the prediction equation is:
~ k, —k
k=k, +—=>—2(t-t,).
;-4
For an observation-premature track dairk ), if the following conditions are satisfied:

n 0 k (gating),
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Ok, ,nT k; , k; are firm tracks,

‘n k‘ mln ‘n k ‘} k,are premature tracks.

thenn= k, andn is removed from observation list.

6.2.3.2.5 Observation to tentative track association

For a tentative track, the prediction equation is:

k = k+k k(t t,).

2 h
For an observation-tentative track pirk), if the following conditions are satisfied:
n 0 k (gating),

Ok, ,nTk, ,0Ok,,nT k,,k, andk, are firm and premature tracks respectively,
‘n k‘ min {In-k |} Kk, are tentative tracks.

thenn = k, andn is removed from observation list.

6.2.3.2.6 Observation to initial track association

For an initial track, there is no way to predict.

For an observation-initial track pdn, k), if the following conditions are satisfied:
n 0 k (gating),
Ok, ,nTk;,0k,,nTk,,0k,nTk,, k¢, k, andk, are firm, premature and tentative

tracks respectively,
thenn= k. If nis assigned to at least one initial track, itamoved from observation
list.

6.2.3.2.7 Unresolved observations

If an observation cannot be assigned to any egistacks, it starts an initial track.
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6.2.3.3 Track update

6.2.3.3.1 Firm track update

After association, a firm track may result in oriehe four outcomes:
1. It is kept firm and updated with only one new okséipbn for only one new
observation is assigned in (without ambiguity);
2. ltis kept firm and updated with the average oftipi¢ new observations as more
than one new observations are assigned in (withgunty);
3. ltis kept firm but not updated due to lack of avr@bservation (maintained);
4. Itis dropped out as being maintained for a ceneinod (e.g. 3sec) due to lack of

new observations (out of date).

6.2.3.3.2 Premature track update

After association, a premature track may resutiria of the three outcomes:
1. It is upgraded to firm (successful initiation) angdated with only one new
observation for only one new observation is assigngéwithout ambiguity);
2. Itis upgraded to firm and updated with the averaigmultiple new observations
as more than one observation are assigned in amttiguity);
3. It is downgraded to tentative by removing the oldesint due to lack of a new
observation so that it can be put in the tentate¢egory to be tested in

association again.

6.2.3.3.3 Tentative track update

After association, a tentative track may resultre of the three outcomes:
1. It is upgraded to premature and updated with onky mew observation for only
one new observation is assigned in (without ambygui
2. It is upgraded to premature and updated with therage of multiple new
observations as more than one observations agnasisin (with ambiguity);
3. It is downgraded to new by removing the oldest palne to lack of a new
observation so that it can be put in the new-traakegory to be tested in

association again.
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6.2.3.3.4 Initial track update
After association, an initial track may result mecof the three outcomes:
1. It is upgraded to tentative and updated with omlg mew observation for only
one new observation is assigned in (without ambygui
2. It is split into multiple tentative tracks and upelh with each of multiple new
observations as more than one observations agnasisin (with ambiguity);
3. ltis treated as a false alarm and removed fromtriek list due to lack of a new

observation.

It should be noted that one observation may bgasdito multiple initial tracks.

6.2.3.3.5 Initial track initiation

If an observation cannot be assigned to any egigtercks, it initiates an initial track. A

new ID is allocated to the initial track.

6.2.4 FCWS Host vehicle state estimation

Host vehicle state observations are longitudina¢ellspeed and yaw-rate. Host vehicle

model is a nonholonomic bicycle model.

6.2.4.1 Nonholonomic constraint and kinematic model

Nonholonomic constraint means the wheels cannoersaeways. We choose the center
point of the rear axle as the reference point @&f ¥khicle body. The nonholonomic
bicycle model is illustrated in the following figeirwheredis front wheel turning angle,

L is the wheel-base,is longitudinal speed is the turning radius; is the curvature.
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Figure 44 Non-holonomic bicycle model

We have the following equations immediately frone tgeometry in the sense of

nonholonomic constraint:

And yaw-ratecowould be:
a=VvC.
The host vehicle kinematic model with nonholonoguastraint is:

X:VE¢05(A)

y =vsin(A)

A=w=vIC

C=a,

V=4

where K.y) is position of vehicle’s reference point in grdunoordinate frameA is

vehicle’s heading angle in ground coordinate systemanda, are driver inputs for

adjusting longitudinal speed and yaw rate.
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This model can be illustrated below:

_______________________________________________________

S _ ~
Observation \i
> —> @

The observation model is:

V=v+n,
6 =tan*(LC)+n,

wheren, and n, are noise components.

The polarity ofé@ is defined as such that it is positive for leftrtiand negative for right-

turn. According to this definition, roads curvirgftthave positive curvature, while roads

curving right have negative curvature. We ¥sandC to denote speed and curvature

converted from observations hereafter

6.2.4.2 Model initialization

To initialize the model K (K>1) steps of observations need to be collectedsK i
adjustable to compensate the object sensor detaysas the host vehicle data can be
synchronized with object sensor data.

x(0)=0

y(0)=0

v(0)=7,

c(0)=¢,

A0) = 77/2
& (O) = (\7K—l _VO)/(tK—l _to)
a. (O) = (6K—1 - 6o)/(tK—l _to)

whereV, is the initial wheel speed measureméﬁt,: tan(é)/L is the curvature from

observationﬁi is the front wheel angle measurement.
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6.2.4.3 Prediction of observations

{V(k+K)= v(k)+a (k) dteo —t)
Clk+ K) = (k) + 2, (k) Hte —t,)

6.2.4.4 Parameter estimation

v(k +1) = v(k) + & (k) it . —t,)
Clk +1) = C(k) +a, (k) t,, —t,)
Alk +1) = AK) +[Ck +1) Bk +1) + c(k) (k)] dft,.,, -t ) /2
x(k +1) = x(k)
y(k +1)= y(k)

+[vk )E:os(A( )) +v{k+1)rwod Ak + L) ., -, )72
+ [v(k) Bin(A(k)) + v(k + 1) sin( Ak +2))] t,., —t,)/2

6.2.4.5 Model update

{a.(k+1) 2 (k) + B Ve = V(K)o —ti)
(k+1 +ﬁ|:kk+K _C(k ]/ Lk )

6.2.5 FCWS Motion decoupling

6.2.5.1 Coriolis effect

If Newton’s laws of motion are used in a rotatingtem, a Coriolis effect appears. It

introduces apparent components in the motion eopsti

Let, X, be the position of a point in an inertial systéimthe coordinate of the origin of
a rotating systenmRR the rotation matrix from the rotating system te thertial system,

X the observed position of the same point in thatiag system, we have

X, =RXg +T or X, =R*(X, -T).

where
cosa -—sina 4 | cosa sina
= andR™ = ] , see below:
sinag cosa -sinag cosa

6-129



Y| A

Then we have
d d

§ o d
—Xg=—R*(X, =T)+R*—(X, -T
& X = SRAX, -T)+ RS (x, -T)
where
d b1 _[-sina  cosa _pi[ 0 1
ER _[—cosa —sinaf}uw_R [—1 O}B‘)
a is the yaw rate of the host vehicle.
Let

_ 0 1 _ _d d d
Vc_ -1 O:|(X| T),V| —axl,VT—aT,andVR—aXR,

then

Vo =RV, +V, -V,) orV, -V, =RV, -V,.

Whena =0, V., =0, the relative speed observed in the inertial framequal to the
speed observed in the rotating frame rotated bydta¢ion matrix. Where # 0, V. # 0,

after the speed observed in the rotating frametsted by the rotation matrix, it is not

equal to the relative speed observed in the indréme. There is an extra compon&ft

in the rotated non-inertial observation. This is tomponent caused by Coriolis effect.

6.2.5.2 Decoupling algorithm

The problem could be solved by means of augmentatk-space modeling which
involves both the states of the target and the siththe host vehicle (sensor platform).
However the augmented model is computationally dermp@o simplify computation, we
estimate the rotation matrix and position of thethaehicle separately, then the results
are used as known to estimate the states of tgettdfstimation of host vehicle states is
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described in section6.2.4. From the states of kebkicle, the rotation matrix and the
position of host vehicle are known as:

"cosA(k) -sinA(k)

_sinA(k) cosA(k)}

T(k)= X(k)}, V; is the observation.

| y(k)
X, (k) = R(k)Xx(k)+T(k), X(k) is the sensor observation.
We can now useX, as observation for target state estimation. I ttecoupling

algorithm, we have used the initial position ancemtation of the host vehicle as the

origin and orientation of the reference inertiainfre.
6.2.6 FCWS Target state estimation

6.2.6.1 Kinematic model

The kinematic model for a free-moving object in kace is:

X=V,
y=v,
VX:aX
Vy:ay

The kinematic model for a vehicle-like target witbnholonomic constraint (see section
6.2.4.1) is:

x = v o A)

y =vizin(A)

A=w

V=4

The relationships between the two models are:
vV, =V E:OS(A)

v, =V 3in(A)

a, =a, codA)+a, sin(A)

a, =-a,sin(A)+a, co{A) = VA
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In these modelsx(y) is object’s positionA is heading angle anl,,v, ) is velocity, all
in ground coordinate systema;is longitudinal speed, is longitudinal acceleration and

a is yaw rate.

This model can be illustrated as the following:

f Observatiof

<t X1

'y

Kinematic model

The observation model is:

{>~<:x+nX

y=y+n,

wheren, andn, are noise.

Implementation in the programs may slightly vargnir the equations described below,

however the models behind those programs are the.sa

6.2.6.2 Initialization
Target kinematic model is initialized during théiadization of the track.

6.2.6.2.1 Initial track

{A®=

y(0)

X
Yo

where

—
<X

} =X, =RX; +T. (R andT are defined in section 6.2.5.2.)
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6.2.6.2.2 Tentative track

6.2.6.2.3 Premature track

x(0) =X,

y(0)=¥,
VX(O) = (iz - i0)/(t2 _to)
Vy(O) = (yz - yo)/(tz —1

6.2.6.2.4 Firm track first steps

x(0)=%,

y(0)=,
Vy (O) = (is - io)/(t3 _to)
A\ (O) = (ys - yo)/(t3 -1,

6.2.6.2.5 Prediction

K(k +1) = x(k) - v(k) it sin( Ak))
9k +1) = y(k)+ v(k) et ceog A(k))
Uk +1) = vlk) + & (k) cot

Clk +1) = (k) +a, (k) et
Alk +1) = Alk) + C(k) tv{k) et
8 (k+1)=a(k)

a.(k+1)=a,(k)

6-133



6.2.6.3 Update

v, =[x(k +2) - x(k = T)|/[t(k +2) - t(k - T)]
v, =[y(k +1) = y(k = T)l/[t(k +1) - t(k - T)]

V(k +2) - v(k = T)/[t(k +1) - t(k - T)]

[ Alk+2) - Alk=T)L,, i+ 1) -t -T) [k + )72+ vk -T)2]
[Clk +1)-C(k-T))/t(k +1)-t(k - T)]

x(k) = [v(k) /2 + v(k +1) /2] Gt sin(A(k) /2 + Alk +1)/2)
y(k)+[v(k) /2 +v(k +1) /2] it o Alk) /2 + Alk +1)/2)

+1)

If k<3T, then
a (k+1)=4a,(k+1);
if k<2T, then
a (k+1)=3a,(k+1)
[C(k+1)=é(k+l) ;
a(k+1)=4 (k+1)
if K<T, then
a,(k+1)=4(k+1)
Clk+1)=C(k+1)
a(k+1)=4(k+1);
v(k +1) =v(k +1)
Alk +1) = Alk +1)

if target is stationary, then

a (k+1)=0

C(k+1)=c(k)
a(k+1)=0
Ak +1)= AKk)
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6.2.7 FCWS Threat assessment

6.2.7.1 Threat measure

The threat measure in the final version of algaomnitis “required deceleration”. Let
a, ,v,,a-,v. be deceleration (positive means decelerating)speed of leading object

and following vehicle respectively, the requiredeleration can be calculated as follows.

2
1. When VF(V—LJSZ[R+2VL j to avoid colliding with the leading object, it is
aL a'L

required:

VE 12

a2 —————;
R+v] /23,

2
2. When VF(V—LJ>2(R+2VL j to avoid colliding with the leading object, it is
aL aL

required:

(VF VL )2 .

a. >a + R

6.2.7.2 Warning detection

6.2.7.2.1 Thresholds

The following table shows warning levels decidedtbsgesholds and sensitivity levels.
Warning level 7 is the highest level. Warning le@eheans no warning. Sensitivity is the
input from the sensitivity switch that the drivercadjust.

Thresholds (mA 4.0 3.8 3.6 3.4 3.2 30 28 26 24 22 20 1.8 <138

Sensitivity-6 r 7 7 7 7 7T 6 5 4 3 2 1 O
Sensitivity-5 7 ¢ (¢ 7 7T 6 5 4 3 2 1 0 O
Sensitivity-4 7 ¢ (¢ 7 6 5 4 3 2 1 0 0 O
Sensitivity-3 7 ¢ 7 6 5 4 3 2 1 0 0 0 O
Sensitivity-2 7 7 6 5 4 3 2 1 0 O O O O
Sensitivity-1 7 6 5 4 3 2 1 0 O O O O oO

Table 21. FCWS Sensitivity, threshold and Warning lesl
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6.2.7.2.2 Moving objects

If the following conditions are satisfied:

1. objectisin lane: |dx|<1.4m
object is in the same direction as bus
object is moving

object is relatively approaching: vr<0

a kw0

bus is not turning violently: |host yaw-rate|<Odiszc
6. object is decelerating: acceleration<0
In-same-lane moving object is detected. Requiredeldeation is calculated and

compared with thresholds.

6.2.7.2.3 Stationary/stopped objects

If the following conditions are satisfied:

1. object is stopped or stationary

2. objectis in lane: |dx|<1.4m

3. object is within 3.5s TTC

4. bus is not turning violently
In-same-lane stationary object is detected. Reduteceleration is calculated and
weighed with probability factor:

1. For stationary object, factor is 0.3

2. For stopped object, factor is 0.35.

6.2.8 Warning signal generation

Once a warning is detected, the signal sent tedwill be extended. The warning pulse

patterns are defined in “WarningSignalPattern[][]":
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int WamingSignalPatternflWARNING_SIGNAL_LEVELS+1][WARNING_SIGNAL_LENGTH]=
{
0,0,0,0,0,0,0,0,0,0,0,0
1,1,1,1,1,1,1,1,1,1,1,1
2,2,2222221,1,1,1}, /llevel 2 pattern
1,1
1

{ 1, /level O pattern
{ 3
{ 3
{3,3,3,3,3,3,2,2,2,1,1,1}, //level 3 pattern
{ 3
{ 3
{ 3
{ }

INevel 1 pattern

444443322 1,1,1}, /llevel 4 pattern

5,5,5,4,4,4,3,3,2,2,1,1}, /llevel 5 pattern

6,6,6,5,5,4,4,3,3,2,2,1}, /level 6 pattern

7,7,7,6,6,5,5,4,4,3,2,1} /llevel 7 pattern
1

When a warning dwells longer than one snapshottiphellwarning pulses overlap. In
this case, the highest pulse level (not originainiveg level) at current moment is
displayed. For example, in four successive deteatixles, warning levels are: 7,4,6,4,

then warnings displayed are:

Time 0112|314]|5]|6]7|8|9]10]|11|12|13]|14
1st pulse, level 7 77 7 6 6 55 4 432 1

2nd pulse, level 4 44 4 4 4 3 3 2 21 1 1

3rd pulse, level 6 66 6 55 4 433 2 2 1
4th pulse, level 4 44 4 4 4 3 3 2 2 1 1 1
Warnings displayed y717|1616|5]5|414]|3|3 |2 |2]|1]1

Table 22. FCWS Warning display

6.2.9 FCWS Further improvement

6.2.9.1 Side recognition

In the third generation warning algorithm, if theawing is triggered from obstacles
detected by the Frontal LIDAR, both passenger art driver side DVI bars will be lit
up, as is depicted in Figure 50. Please note tagBt it is the guardrail that is the

warning trigger, not the vehicle on the left.
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09:53:06 Measurement: Flidar:s Pradar:+

Bus/Obstacle State Prediction 1.2s:

DX,DY:m V,RV,Speed:m/s A, Heading:Degree AL:m/s/s Sensi.-4

Bus State Estimation: I iz 3 0

Speed=15.9 Heading=53.6 AL=-0.3 Bus Panel &
5 0.5 &0

Figure 45 FCWS Warning scenario snap shot (without die recognition)

This warning was often considered a nuisance wgrhindrivers as they did not think
that the hazard was in the path of the bus. To ghaher example, in a lane changing
scenario, a parked car on the passenger side pigkég the frontal LIDAR may lead to
a warning lit up of both the passenger side anditiver side DVI. These instances affect

the credibility of the system from a driver poirfitview.

To address the problem, we set up a limit XM, & thteral position of the obstacle (Dx)
is greater than XM, only the passenger side DVIibdit up and the warning level is
reduced to one if the obstacle is stationary. Aeamshin Figures 50 and 51, the driver
might feel comfortable to the scenario below ansilgdigured that the guardrail is the

warning trigger instead of the car on the left.
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Measurement: Flidar:s Pradar::

Bus/Obstacle State Prediction 1.2s:
DX, V,RV,Speed:n/s A,Heading:Degree AL:m/s/s Sensi.=4

— : 120
Bus State Estimation: 1]

Speed=15.9 Heading=53.6 AL=-0.3 K Bus Panel &
0.5 60

Figure 46 FCWS Warning scenario snap shot (with sideecognition)

The strategy here is to turn the nuisance warniogs friendly reminder as shown in
Figure 52. Without any hardware cost, it only ilwes algorithm change and improves

the perception of the system from the drivers pofrtiew.

Dx :
Stationary - | Stationary
Roadside I ] —  Roadside
Targets/ B | Targets:
F-Lidar Stopped :# — E-lidar 1 g_ars
Targets | — — igns
If Dx>XM — —

DVI Setlevel=1 T\D/vl/'_
Right DVI only
Turn the distraction to a friendly reminder

(Algorithm change: no hardware cost)
The system better conforms to driver expectations
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Figure 47 FCWS Strategy of side recognition

6.2.9.2 Scenario parsing and target recognition

6.2.9.2.1 Following distance constraint

One dangerous scenario, which was not accountednfgrevious versions of the
algorithm, is a tailgate scenario. In this scendrithe bus gets too close to the subject
vehicle, for example, two vehicles maintain constsimeed at 40 miles per hour, the
calculated required deceleration would be almost néhich indicates no hazard and the
TTC would not fall within the dangerous zone eitiHdowever since the behavior of the
driver of the subject vehicle is not completely dgictable, there is a chance that the
leading vehicle could suddenly decelerate and tisedoiver could not have enough time
to avoid a collision even if the correct warninggigen. Therefore, a following distance
constraint was added. As long as the followingatise falls within the dangerous zone
which is calculated based on the bus speed, thstiség level and relative speed of the
subject vehicle, a warning will be issued to infotime driver of the potential danger of

following too close.

BUS

S.V.

) U o 0
V: |Dx|<X

|[dV|<5m/s

If Dy<Y(V, dV, Sensi), issue a warning.

P »
<« >

Figure 48 Following distance constraint

Thefigure below depicts the scenario before and aftke upper part shows the scenario
and the “before” situation. The relative velocity only -0.4m/s and the calculated
required deceleration does not fall within the daogs zone. The DVI does not light up.

However, as we can see, the predicted distancesbatthese two vehicles in 1.2 seconds

6-140



is dangerously close. After we added the followitigtance constraint, as shown in the
lower part of the figure which is the “after” siti@n, the system is now going to trigger a

warning as shown in red.

& BEFORE ‘it .

Bus/Obstacle State Prediction 1.2s:

DX,DY,H:m V,RV,Speed:m/s A,Heading:Degree AL:m/s/s Sensi.-4

AFTER

05 5 MPH 120

Speed=11.6 Heading=90.1 AL=-0.4 'A Bus Panel
0.5 1]

Bus State Estimation:

Figure 49 Following distance constraint (before anafter)

6.2.9.2.2 Creeping warnings and target recognition

Another dangerous scenario which was suggestedhéydtivers and human factor
researchers is the creeping warning. When the dsisvly follows a vehicle and then
stops the bus, there is a chance that the driterdiygtracted and his foot slips away from
the brake pad therefore causing the bus to mowvdystowards a leading vehicle without
the driver's awareness. Hence it is considered rtapb to issue a warning under this
circumstance. In order to do this, besides thegdimgit constraint been enforced when
the bus speed is slow, the target recognition suir® is added to tell if the target is a
moving vehicle/object or not. As the tracking alon records the historical data of
every track, a bit is set to tell the target infatran based on the pattern of its movement,

the probability factor is increase to 0.9 whenttrget is recognized as a stopped vehicle.
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Figure 50 The creeping warning

6.2.9.3 Using RADAR data

The warning algorithm is designed for LIDAR apptioas but could be used for
RADAR data processing as well. To cope with differeeather conditions, for example,
snow, rain or fog, which LIDARs may have difficulgealing with, two microwave

RADARSs are installed on the bus. When the windshieiper is turned on we assume
that the weather is getting bad, the system wiib@uatically switch to RADAR sensors.
An interface subroutine is developed for RADAR dadaversion. The program will take
RADAR data input and convert it to LIDAR data fortm@hat is, converting from the

target distance, azimuth angle measurement of RAD#&Rthe lateral and longitudinal
position measurement of the target, and then feeddata to the warning algorithm.
Although the azimuth angle resolution of the RADARot as good as the LIDAR, the

system is now capable of working under harsh weatheditions.
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6.2.10 FCWS Suggestions

To suggest more improvements of the algorithmselhpmints should be emphasized:

1. Transition of vehicle models - It was found thahholonomic model is good for
moving targets in terms of estimating yaw-rate araving direction. However at
lower speed, due to short displacement in procgssme, it is hard to detect
moving direction. In this case free moving modelbitter. The transition of
vehicle models from higher speed to lower speed \aod versa needs to be
improved.

2. Scenario parsing - This has been a topic sinceb#dwgnning of the project.
However it is not well resolved yet. It needs toisider the relationship among all
objects and subject vehicle and infrastructure.r&uralgorithm only detects
straight road in-lane objects, and cannot avoisefavarnings due to lack of lane
information and driver status.

3. Driver model - Driver’'s field operational data weamalyzed leading to the
empirical threshold settings. However more complexer model may help to
tell whether driver is attentive. Collision warnitg supposed to be issued only
when driver is inattentive.

4. Road geometry - Knowledge about road geometry auntercould be used to
eliminate false alarms triggered by road-side dbjec out-of-lane objects, which

could be obtained via on-vehicle detection or arLAvhap database and GPS.

6.2.11 FCWS Summary

The FCWS has been tested for the over two yeass iniod and has been demonstrated
in various occasions including 2003 National IVeatin Washington DC and General
Managers’ meeting in Santa Monica. The system lis @bsignificantly suppresses false
positives (unwanted warnings) but keeps high seitgitto frontal collision scenarios.
The biggest challenge for transit collision warngygtems is that buses usually serve in
urban/suburban environment where too many objeptard rails, traffic signs, parked
cars, etc.) may trigger false alarms. Additionalbys drivers are very well trained
experienced drivers who are less likely to run iatcidents thus are very cautious with

collision warnings. It is therefore a difficult gol@m to detect real imminent crashes and
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give drivers timely warnings while suppressing essiee false alarms. The FCWS
algorithm developed under this program has adddetss® problem to a great extent. It is
also worth noting that the target tracking andesestimation algorithms can be used for
general applications. In the Intersection Collisiarning Program, the algorithm has
been used for LTAP/OD (Left Turn Across Path/Opfm8$irection) collision warning

scenarios, without major changes.
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6.3. SCWS Warning algorithm
The sensors and modules described in the previous sections provide dmeicdyn

guantities of the bus and the observed objects and additional informationtladout
environment. These measurements are combined with preloaded imdorn@t
analyze the threat level of the situation. In the warning #lgorthe system
calculates the probability that a collision will occur witkive next five seconds. If the
probability of collision exceeds a certain threshold, an approprigaing is
displayed to the driver. In the warning algorithm for the SCWShave two warning
levels, “alert” and “imminent warning”. An “alert” is displed to the driver when the
situation is somewhat dangerous, an “imminent warning” is givémeifsituation is
dangerous enough to inform the driver in an intrusive way. A detailectiggon of

the algorithm can be found i A short example is illustrated here.

] Fixed bus frame
World coordinates )
object

object

Figure 51 The trajectories of a bus and an objectr®wn in the world coordinate frame (left) and
the fixed bus frame (right). In the right figure possible positions of the object are shown for the
times 2, 3, and 5 seconds in the future. Green inddites that no collision has happened; red
indicates that a collision has happened.

In Figure 51 a bus turns right while an object crosses its path fight to left
(World). The sensors measure the speed and turn rate of the bus bwhtioa and
velocity of the object. The algorithm calculates possible paththefobject with
respect to the bus (Fixed bus). In this calculation the pathssardulied according to
the uncertainties of the measured dynamic quantities as svatarding to models
of driver and object behavior. Next, the system determinesnfiestup to 5 seconds
into the future which fraction of these paths lead to a collisiofkidare 51 this is

[*Y] Mertz, C. “A 2D collision warning framework basead a Monte Carlo approach,” Proceedings of
ITS America's 14th Annual Meeting and Expositiépril 2004.
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shown for the times 2, 3, and 5 seconds. This fraction is the propalilcollision
and is plotted versus time (Figure 52). This graph is dividedtimee areas, each a
different level of threat severity. The area with the sestelevel that the probability
of collision curve reaches determines the warning issued to trez.dri

100

a0

60

40

Probability [%]

20

0 1 2 3 4 5

Time [s]

Figure 52 Probability of collision plotted versus ime. The three regions correspond to the
warning levels aware, alert, and imminent

The algorithm can also deal with environmental information. Fomeig if the
object is a pedestrian and is on the sidewalk, there is an edhémtood that the
pedestrian will stay on the sidewalk. This is addressed bygythie paths leaving the
sidewalk a lower weight.

6.3.1 Under-bus warning

Another important alarm is the under-bus warning. It is issued wipemson falls and
has the potential of sliding under the bus. We detect theseimigidity observing
pedestrians who disappear while being close to the bus. The chkalienthis
algorithm is to distinguish people who disappear through falling and petl@nly
seem to disappear, but in fact either merged with another objece arccluded by
other objects. We have not yet completely finalized this algurit

6.3.2 Notification that a collision occurred

Sometimes the bus can collide with an object, especially arpeasd the driver does

not notice it. It is therefore important to notify the drivea i€ollision has occurred. A
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notification will be triggered if the probability of collision is 100/ times up to 1

second.

6.3.3 Frequency of alarms

We analyzed 5 hours of data to see how many alarms weauillTge following table
lists the number of alarms according to side (left or right)ersty (alert or imminent

warning), and sensitivity level of the warning algorithm:

sensitivity | low medium | high
left alert 62 75 91
left imminent warning 15 21 27
right alert 17 24 40
right imminent warning 2 2 4

Table 23. SCWS Alarm Frequency

These alarms contain true and false positive alarms. The Sobhsétded False
Alarms in section Testing and Data Analyses deals in mdesl déth false alarms.
Taking the numbers for the medium sensitivity, then we will gealart once every

three minutes and an imminent warning once every 13 minutes.

Another interesting measure is how long the alarms will Fsdtowing table lists the

average duration of the alarms when the high sensitivity was set:

cycles time [s]
Left alert 30.6 0.41
Left imminent warning 24.4 0.32
right alert 26.8 0.36
right imminent warning 7.8 0.1

Table 24. SCWS Alarm Duration

About 80 % of the alerts last less than 0.5 seconds and most amed0012 seconds

long (see figure below).
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Figure 53 - Duration and frequency of SCWS warnings

At first glance, this seems like warnings occur way too odireth certainly more side
warnings occur than frontal one. It should be pointed out that the framdakide
CWS systems serve different purposes. The frontal aleetsused as an aid for
distracted driver, while the side alerts provide the transitabgpemwith additional
information. As shown above, most of the warnings are very short andittr
operators have not complained about too many warnings. This wasess by a

researcher riding on the bus who also did not feel that thetecaneany warnings.

6.4. False Alarms
A few things need to be said about false alarms. False atamise caused by system

failure, i.e. the system did not perform as expected. It is also possibléhthaystem

performs as it should, but the driver considers the alarm a naisanthis section we
will mostly discuss the first kind; we will describe systéailures we observed. The
second kind is mostly part of testing the system with drivers,sbote of these
nuisance alarms are due to the inability of the system tomeasogertain situations.
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Since there are only a few positive alarms, it is relativdsy to test for false

positives. To find the rate of false negative alarms on the b#rel is very tedious.

In the following sections we will discuss the false alarnosthy qualitatively. Some
of the sources of false alarms have since been eliminated ebliave just begun to

collect new data.
6.4.1 Sources of false positive alarms

6.4.1.1 Incorrect velocity estimates

In section 9.4.2.Error characterization of the full DATMO we found that the error in the
velocity of objects can be described by a Gaussian distributiongtus gutliers. The
Gaussian error will cause some velocities to be a littlefhibut that can increase the
probability of collision by enough to trigger a higher warningele These false
alarms are not necessarily a nuisance to the driver sincsittlaions are in fact
somewhat dangerous, just not as dangerous as the system eslituabe. We have
found that when the driver can understand the basis for why the wangsag
triggered, he will not perceive the warning as false, éf/éris not as dangerous as
the system displays. Quite a different matter is the abee outliers. Here warnings

might be issued for objects which pose no danger at all.

Since most of the false positive alarms in this categorgaumsed by small errors in
the velocity and only a very few are caused by the outlieestransit operator is not

overwhelmed by nuisance warnings that they don’t understand.

6.4.1.2 Error in location

The distance accuracy of the laser scanner is very good resgeys section on the
SICK laser scanner) and is very unlikely to have a falsenathue to an error in
location. However, when the system determines if an objemt isr off the curb, a
small error in the position can have a large effect, if th&ipods very close to the
curb. Also in this case, we need a second position measuremesety rihenposition
of the curb. The position measurement of the curb is more prongais ¢han

position measurements of objects.
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6.4.1.3 Vegetation

Vegetation poses a challenge in many ways. Returns from a laustbec very
inconsistent and therefore DATMO might attribute false locatiod/or velocities to

such objects.

It also sometime happens that a small amount of vegetatiors¢eng. grass) is very
close to the bus and triggers an imminent warning. The bus driveiyusilanot
consider some grass as any threat at all and thereforeongider this warning as a

nuisance or malfunction of the system.

6.4.1.4 Ground return

Usually the objects seen by the laser scanner are aboveothrglike people, cars,
mailboxes, walls, etc. But sometimes the scanner can segrdabad itself, either
because the ground is sloped or because the scanner is tiltedgrbtinel is seen in
the path of the bus, a warning might be issued. These falsév@aaiirms from

ground returns have in the past been the biggest source of falswegosiVe

discovered that the bus itself was titled by a few degreesdewtiae left side which
resulted in many ground returns on the left. The problem has nebeeth fixed and

we hope that this source of false alarms has been greatlyededuc

6.4.1.5 Sensor failure

During the operation of the side collision warning system we hadraesensor
failures. Cameras got misaligned, the camera of the liasestriper stopped working
because water leaked into it, and the laser scanner didn'tefttbyd. Each of these

failures can cause false positive alarms.
One of the cameras and the laser line striper are usecdetonded the curb position. If
they do not work properly, the curb position can not be determined asdnnai

alarms can not be reduced.

When the laser scanner does not fully extend, it sees the @fatine bus. This return

will be interpreted as an object very close to the bus and a wasilinge issued.
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Furthermore, the scanner is misaligned and objects appear aeatgmsitions which

can lead to false alarms.

6.4.2 Statistics of false positive alarms

We looked at all the alarms with the high sensitive settingioresdt in section 6.3.3
Frequency of alarms and tabulated them according to followingaae: True
positives, velocity might be somewhat off, velocity is an oythesgetation, and
ground return. The category “velocity might be somewhat affaijudgment call
because we do not have an independent measurement of the velocityatéhethe

video or the raw laser scanner data to judge if the velocityngoye DATMO is

reasonable. It is also not always obvious, if there would have besartiealarm or

not if DATMO would have given the correct velocity.

true positive | velocity off velocity outlier | vegetation ground return
left alert 40 44% | 15 16% 5 5% 0 0% 31 34%
left imminent warning 1 4% 7 26% |3 11% |0 0% 16 59%
right alert 25 63% | 3 8% 7 18% |4 10% 3%
right imminent warning | 1 25% | 2 50% 1 25% |0 0% 0 0%
total 67 41% | 27 17% | 16 100% |4 2% 48 30%

This data set was taken before we leveled the bus and itdfeetefs a great number
of false positives caused by ground returns (30% of total). Veaalalyzed a later
run, after the bus was leveled, and we did not see any moremhlith the ground
return. However, we experienced a failure of the laser scamrikat later run. The
sensor did not always extend fully. The data was therefore cedraptd resulted in

120 (1) imminent warnings on the right side within a 5 hour period.

In summary one can say that the majority of the positive alarsmunderstandable by
the transit operator. Many of the false positives are not veiyusgy false (velocity
off), and the driver might not even consider them nuisances. Wiegeadmount of
false positives are seen by the operator, the problem candeel toack to sensor
failures (e.g. laser scanner not level or not fully extendeldg. Aumber of serious
false positives which will be present even if all the sensor& worrectly is small and

due primarily to velocity outliers which represent about 10% of wgrgenerated.
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6.4.3 Sources of false negative alarms

Many of the reasons for false positive alarms can also calse hegatives.
Specifically these are errors in velocity and location. Theiogat(false
positives)/(correct negatives) and (false negative)/(corredtiyesy due to these
errors should be comparable. But since there are much less quosgiives than
correct negatives, one should expect much less false negatindaltgapositives due

to these errors.

6.4.3.1 Sensor failure

If the laser scanner or the vehicle state module stops todanttien the system will
not be able to issue any warnings. If the laser line stigilerthe system will not have

the ability to reduce nuisance alarms by considering theaelafiobjects to the curb.

6.4.4 Reduction of nuisance alarms through curb det  ection

The system tries to reduce the number of nuisance alarm&ibyg tato account the
relation of the object to the curb when the probability of collisiorcakulated.
Details of the method can be found in the paper “A 2D Collision \WgrRramework
based on a Monte Carlo Approacfi’'We found that there are 30% less alerts when
using curb information. For a few scenarios the warning sevieitgased, where
vegetation reached over the curb and therefore its position wasle@usioff the
curb. The system worked as expected, but the driver might coreidanminent

warning for an overhanging bush as a nuisance alarm.

6.5. System Faults and Recovery
6.5.1 SCWS System faults and recovery

The SCWS system has several layers of fault detection aowkergc
- First, any process which dies is restarted within 5 seconds.
- There are processes which are labeled "vital." If a pitatess dies then the whole

SCWS system will be gracefully shut down and restarted. Witadesses include

data logging processes, as if we lose a data logging pribegsthe data continuity

2 Mertz, C. A 2D Collision Warning Framework basedaoMonte Carlo Approach.
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could be compromised.

The central system manager checks to see if both the lefigimigprocessors are
still up. If it loses contact with either process it shuts makae SCWS system,

waits until contact is reestablished, and then restarts theSsygtem.

All processes in the system have a "heartbeat" which is patgzhgia the shared
memory system. These heartbeats contain the time ofstheifaand some simple
debugging messages. The central system manager monitorbehetbeats, and if
it does not see a heartbeat change for a process in 30 secamdss ilown and
restarts the SCWS system, as a "hung" process can have sepermissions on

the proper operation of the system.

The heartbeat information can be displayed in a graphical useraogefor
debugging as shown in Figure 54, but the same information is alsmlipally
saved to disk for later debugging Just as each line of the GU&tadithe status of
a running process to give a system overview at a glance, tfieelogntains all the

necessary information to judge the system's health remotely.
The system sends e-mail via a cell modem to the reseanvhers it starts and

finishes and researchers can remotely check the heartbett fogke sure the

system is functioning properly.
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Figure 54 SCWS Status Debugging GUI

6.5.2 FCWS System faults and recovery

A fault is an unexpected change in a system which tends to degracdl system
performance. Early detection of faults in the FCWS can be conwated to the
driver in which case the driver may solely rely upon their own jiedmhen driving

and report the malfunction to an engineer as soon as possible.
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A fault can be categorized into different classes from diftepgerspectives, for
example faults can be categorized into either static faultdynamic faults, or
software faults or hardware faults. For the FCWS from stesy input/output
perspective, faults are categorized into four main groupings: pfawks, sensor data
faults, DVI faults and hard disk faults.

Many approaches have been proposed for fault detection, isolationyateins
recovery. For example, two speed sensors might be installedasureethe vehicle
speed, so that if one of them is detected malfunctioning, theofidltat sensor will
not be used. However, the extra cost incurred must be considertw foardware
redundancy. The approaches proposed here are mainly traditional &esroahbich
require no or little additional hardware cost, and are model-bs@daches, which

make use of mathematical models of the system.

When a fault occurs, some actions need be taken based on the seEvibrityfault.

For example, if a power fault is detected and confirmed, aimgamessage (DVI fast
flashing) might be displayed for a couple of seconds, the falllbairecorded in a
disk file, and after the warning is given the system will bmatically shut down or

switched to a debugging mode until the problem is solved.

6.5.3 FCWS Faults categorization

Speed Gyro
sensor /
Power
Processing /
I e
Host vehicle state
sensors
(database) Englnee“ng L Circuitry ———o DVI
Computer
Obstacle sensors ‘
(database)
? Hard Disk
Processing
Lidars Radars
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Figure 55 FCWS Fault categorization

To categorize faults of the FCWS, the first thing we need to kadww the system
works. Basically, the FCWS reads the sensor data from thieadatand processes the
data to issue warnings (displayed on the DVI), at the sang s§ensor data and other
information (including fault records) are recorded on the hard disaulkmay occur
in a sensor itself, in the signal driver or filter, or in theftware processing.
Regardless of where it happens, or what type of fault(ihechanical or electrical),
there will be a fault of the sensor data in the database.eHiom the system
input/output prospective, for the FCWS, there are four main fawdgodes: power

faults, sensor data faults, DVI faults and engineering comfautks.
6.5.4 FCWS Fault detection

6.5.4.1 Power faults

An open circuit or a short circuit may occur in power transiorisines. The use of
Kalman filter for power system state estimation was intreduin 1986. For the
FCWS, it is possible to utilize Kalman filter to detect poviaults. Additional A/D
channels are needed to monitor the power supply. Thus the state sukete for the
voltages and currents, the noise statistics could be investigatgter investigation

and research are still needed for power fault detection.

6.5.4.2 Key sensors (for vehicle states and target detection/tracking)

Speed sensors, steering angle sensor/gyro/accelerometersedréor the estimation
of vehicle states. LIDARs provide information on target detedtai{ing. The
measurements of these sensors are essential for vehicls/tstafe estimation and
prediction. Faults of these key sensors could be circuitry fagichamical fault or
software fault, which result in corrupted sensor data. The faultlde detected and

isolated using the following approaches.
6.5.4.2.1 Traditional fault detection approaches

6.5.4.2.1.1 Installation of multiple sensors (hardware redundary)

Additional sensors may be installed to compare the measuremethis sfheed, the
steering angle, etc. There are a lot of algorithms do@se hardware redundancy,

however, the extra cost must be considered.
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6.5.4.2.1.2 Limit checking

All measurements could be checked based on a pre-set lintite Iineasurement
exceeds the limit a fault is indicated. For example, tH2AR has its own detection
range and azimuth coverage. If the LIDAR data exceeds tht timei malfunction

will be recorded. This approach is recommended.

6.5.4.2.1.3 Fault dictionary approach

Each type of fault has its own characteristic. A faultidiery contains all known
“characteristics”. We will know if a fault presents by quaring the system behavior
with repertoires of faults in the dictionary. For this approachrbee we know about
the outcome of a fault, the more efficient our fault detectidhb&. For example,
when the string-pot is broken, the steering angle data beconwssint value even
when the bus turns. This pattern could be saved in the dictionary afaliltheould

be easily detected. This approach is recommended.

6.5.4.2.2 Model based approaches-Basic principle of Kalman residual test

In the FCWS, this method is recommended as it requires no addiiamvare, and
is easy to implement and capable of detecting and isol@tidgcating which sensor

data has problems) most sensor data faults. Utilizing the Kafittaring method,

2
there are two options: Kalman residual test of () Chi-square test. After
investigations and simulations, the first method is found to be botffeativee and

efficient way to detect some of the key sensor faults.

If the Kalman filter is correctly modeled, the innovations, \whéce the differences
between what comes out of the sensor and what is expected, woudtlobmean

white noise and its autocorrelation function would be zeros except@telay.

Assuming system model:

Xy =i X Wiy
Z, =H X +V,

WhereXk is an n dimensional system state vec%f!“l iS an n*n system matrix,

Wi andVk are independent Gaussian white noise vectors with n dimension and m
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dimension respectively?k is an m dimensional measurement vectB\"s is an m*n

system measurement matrix.
Ne =2k ~Hi X \where Xkrkr = Gk X

'« is m dimensional zero mean white Gaussian nois¢h V\Ir:'r(rk)zo,

T T
= = + .
E(renc) = Ac= HiRgaHi + R when there are no sensor failures.

When there are sensor failures, it will not be zaean white noise.
Ho No fault detectedE () =0 E(ri) = A
H, ¢ sensor failureE (k) = # Bl — A~ 1) 1= A,

"« is a Gaussian vector. Therefore, to detect semdares it is convenient to use the

T pA-1
log-likelihood e AT which is a Chi-square statistic (with m degreegreédom).

The threshold should be determined according taneads.

An upper threshold and lower threshold for the alisovalue of the residual and the
trace of the covariance matrix of the Kalman residue used for fault detection. This
is based on the fact that the estimation is ndeperesulting that the Kalman residual
can not be too small all the time, but it can nateed a certain limit either otherwise

we would have used other gain factors in the Kalfiitar.

Abs (Residual)
Trace of the 0 '
Covariance matrix

Lower-Threshold Upper-Threshold

The following three figures show the raw speed ,ditdman filter residual, trace of
the covariance matrix of the residual and its loweeshold when the speed data is
corrupted starting from the 18Gsampling (This is a simulation of a fault. Speed:
m/s). Once the trace of the covariance matrixhef Kalman residual is below the

lower threshold, the event will be recorded onhthed disk.
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Figure 58 Trace of the covariance matrix

The following three figures show the raw speed ,ditdman filter residual, trace of
the covariance matrix of the residual and the uppershold when the speed data was
interfered by an additional -10db white Gaussiansecstartingfrom the 108
sampling. Once the trace of the covariance matfrithe Kalman residual is higher
than the upper threshold, the event will be reabatethe hard disk.
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6.5.4.3 DViIfaults

Essentially, the DVI is part of the system circuitCircuitry faults include stuck

faults, bridge faults, short circuits, open cirsugtc.

One simple way of DVI fault detection is to leflash at certain frequency for a few
seconds when the engine is ignited. The drivercceakily find any broken LED. In
addition if the DVI is broken when the bus is ineogtion, the driver should identify

what is not working and sometime later report iatoengineer.

Despite the off-line fault detection mentioned abothere is an on-line approach as
well. At present, DVI could be regarded as “writelyomemory cells”, which can
only be written but can not be read or checked H®/ ¢éngineering computer. If
additional A/D channels are available, it will bespible to monitor the DVI in real
time and therefore the system will be capable ofaitng the broken LED/circuitry.
For example, if an open circuit of a LED occursewlwe write a “Low” to the digital
output, and then read the input , a +5V voltagéears of a +1V voltage will be read

and the open circuit fault will be detected at once
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Figure 62 Detect DVI fault

6.5.4.4 Engineering computer / Removable hard disk faults

The fault of the engineering computer can be deteby its self-testing program. An
additional program for the removable hard disk ddo¢ added. During the system
initialization, a specific type of data could beittan to the removable hard disk, and
then the data will be read and verified to se&efdisk is properly locked so that the

recording can proceed as expected.

6.5.4.5 Detection scheme

To avoid false alarms, except for power faults, thalt detection should keep
monitoring the system for a while (half to 1 minuteefore giving an error code

which confirms the fault. But all abnormal eventd be recorded.

/\

Keep
Monitoring

Errors
Detected

Give an
Error code

Errors
Recorded

Figure 63 Detection scheme
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6.5.5 FCWS Faults reporting and system recovery

6.5.5.1 Power faults

A power fault could be devastating, a fast flashaighe DVI will give an urgent
warning telling the driver a severe fault has psturred and the system will be shut
down soon after. The fault should be recordedfifedor later off-line investigation.
We might use a power relay or modify the currenv@orelay to build a soft-switch
that could automatically turn the system off atiee urgent warning is given. Any

faults regarding the power will need further invgstion by an engineer.

6.5.5.2 Sensor data faults

If a key sensor data fault is detected and confikntiee DVI will be disabled and an
error code will be displayed on the DVI bar, indieg which sensor data may have
problems. For example, if there is something wraiitp the speed sensor data, the
DVI will not display warnings issued by the colbsi warning algorithm, instead, it
will turn on the lowest segment of the DVI bar mdorm the driver of the malfunction
(Assuming the DVI is working properly). All faultshould be recorded in a file for
later off-line investigation. Fault detection couldcate which sensor data is
corrupted, and record the fault property. By analyZault record at the receiving
end, a good guess could be made about whetherthieisnechanical fault or the
circuitry fault, but repairing it will still needufther investigation by an engineer.

6.5.5.3 DVlfaults

If any part of the DVI is out of order, the driveimself could be aware of it quite
soon. The rest of the LED’s (which still work) mégsh slowly for a few minutes to
warn the driver that the DVI is out of order. Tteult should be recorded in the file
for further investigation. Although fault detectieould locate the broken LED, it is
not necessarily the LED that is broken, for examfile digital output line might be

broken. Therefore repairing it will need furthevastigation by an engineer.

6.5.5.4 Engineering computer / Removable hard disk faults

The engineering computer has its own self testmoggam. An additional self testing
program will be added to check if the hard disk ksoproperly. If there is a fault, a
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warning message will be given (an error code welldisplayed on the DVI) and the
driver may report the problem to an engineer. Isihot locked, then lock it. If the
disk is broken, then replace a new one. If thesdale full, the new pc104 system will

automatically stop recording new data and recoeddibk full message.

6.5.6 FCWS Summary

The summary of the system fault and recovery aosvshbelow. Four categories of
system fault: power fault, key sensor fault, DMllfaengineering computer fault are
described and its detection algorithm and detedtostegy are proposed and system

fault reporting and system recovery methods arensanized.
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Figure 64 FCWS Fault detection architecture
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6.6. FCWS Simulation Playback Tools
To aid in the analysis of the data collected frdra buses and to test out alternative

warning algorithms and sensitivity levels threel$dmave been developed. The tools were
developed in an iterative fashion with the firsbltbeing developed in May 2000. The
three tools are:

1. The Data playback tool (developed in 2000)

2. The Simulator tool (this tool can work in conjumcti with an updated data
playback tool) (developed in 2003)

3. The Data marking tool (this tool is based on thia qgidayback tool with additional
functionality (developed in 2003)

Both the simulator tool and the data marking t@lsw the user to post-process data off-
line. The tools are used to help us analyze theniwgrscenarios by recreating detailed
state information from any video clips that arentérest. (For example, to figure out if a
warning was triggered appropriately). The purpds® tools can be described as:

1. to run simulations of potential changes/improvera@itthe algorithm

2. to analyze/set system parameters, such as setydiivels

The three tools are described in greater detaivinel

6.6.1 The FCWS Data playback tool

The basic data playback tool is a Windows™ bas@tiGgtion and is designed so that a
user can watch a clip of video (from 4 differenéws) while simultaneously displaying
bus state information such as speed, accelerdirake pressure, front wheel angle and
GPS location. As this tool has been supersededhbySimulator tool and the data

marking tool its function and improvements are dssed in the next two sections.
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6.6.2 The FCWS Simulator Tool

The simulator tool is programmed in C and basedthen FCWS warning algorithm
program that is running on the FCWS and ICWS bu$es. main difference is that
instead of processing data from the database irine@, the simulator processes the data
off-line using the interface subroutine, which certs the sensor files to a virtual
database. Therefore, the simulator will have ail pinocessing details and intermediate

variables that are not recorded in real time prsiogs

FCWS Engineering Computer| Warning
Sensor dat > (Collision warning algorithm) —mg DVI

A 4

Sensor data
(Saved in hard disk)

l

(Interface program)

l Warning

Algorithm changes/ Any PC
Parameter changeg (Simulator program)

Saved in files

A 4

A4

Variables

Figure 65 The simulation tool

An updated version of the playback tool utilizitng tsimulation tool is developed to help
us comprehensively study a warning scenario. Thglay is divided into 5 sub-windows.
Video from each of the three cameras is displayednie sub-window. It projects the
RADAR and LIDAR targets into the video frames, @sgimple visual marks to indicate
which objects in the frames have been detected lhghaRADAR or LIDAR. The tool

can decode and play back MPEG movies in Windowswh Virtual DVI bars are added
in the front-looking sub-window. Whenever thereaiswarning, it will be displayed

accordingly as shown.
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Host-bus measurements including bus speed, busviteeel angle, bus accelerations and
brake pressure, are displayed in the lower rightwsindow simultaneously during video

playback.

The right part of the lower left sub-window showbials eye view of the bus and targets
around it. The larger blue box represents the kagyares in green represent
stationary/stopped obstacles in front of the bugiases in yellow represent moving
targets, squares in red represent warning triggeich could be stationary, stopped or
moving objects. The left part shows the predictdbriarget tracks (up-left) and the bus
state estimation, which is in blue. They are alypld simultaneously during video

playback.

For example in Figure 66: at 10:21:18 there isaamimg triggered by a subject vehicle
(ID 185). Its raw data LIDAR measurement is mappetb the front view window (small

red circle), the text in red in the lower left wowd starting with the target ID-185 show
the prediction of its relative position, speedlw# target (relative to the bus). A birds-eye

view of the scenario is shown in the big white leinwith the same target ID 185.
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Figure 66 The updated playback tool

This tool provides the data reviewer a completevwé all the data collected at the same
time. With the help of the simulator mentioned adbatv also provides processing details,
which include the bus/target state estimation anediption. Furthermore, the tool
provides the ability to understand sensor behavioaffic scenarios, and the
characteristics of targets.

6.6.3 The FCWS Video Data Marking Tool

This tool can decode and play back MPEG movies inddivs™. The display is divided

into 7 sub-windows as shown in Figure 67 Videarfreach of the four cameras is
displayed in one sub-window. DVI bars have beeresnposed onto the forward view
to display any warnings as they occur. Also pr@dabnto the camera views are visual
marks to indicate objects detected by the RADAR /@ndLIDAR. Host-bus

measurements including bus speed, bus front whegle abus accelerations and brake
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pressure, are displayed in the upper right sub-svingimultaneously during video
playback.
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Figure 67 FCWS Video Data Marking Tool

The sub-window titled advanced allows the userutng to the next saved file and to
graph various bus states. 12 different items cé dah be graphed. The first four graphs;
warning, brake, steering angle and speed can b&egldirectly from the engineering

data. The remaining eight graphs require that tita & first post-processed. The three
selectable graphs titled Wrecordl, Wrecord2 andcdf8 allow the user to plot data

that has been post-processed off-line to determima effect proposed changes in the
algorithm or sensitivity levels would have. The gta appear beneath the video sub-
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window and plot data for 1-minute intervals simnéausly as the video plays. The

graphs are useful as they allow the user to waichénds in the drivers’ behavior.

The sub-window titled Control Panel allows the uberfollowing functionality:

an option to set the frame rate (on a per secosid)ba

an option to view the video frame by frame (i.ac¢letime the user hits play the
video will advance one frame)

a play/pause button

a stop button

fast-forward and rewind

a tool to mark the beginning and end of all theniags viewed by a user. Once a
number of warnings have had their start and endgimarked the user can open

the “mark” file and select play to watch all of tivarked sections.

The final sub-window is the mark tool sub-windowszsen in Figure 68 , which is

accessed by selecting the Marking Tool button @Advanced sub-window. This

tool allows the user to “mark” the data so thatsklecting from any of the 5 rows of

6 buttons (30 buttons in total) when the videai@pped a new file is created that has

the file name, the time, and which buttons wereaet. The names of the buttons

are changeable, the current pre-set set are:

Bus speed (in mph)

. 0-10
. 11-30
. 31-40
. 41+

Steer behavior
* yes prior to receiving a warning
* yes prior to and post receiving a warning

* yes post receiving a warning
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* no steer around the time of a warning

Brake behavior
* yes prior to receiving a warning
* yes prior to and post receiving a warning
* yes post receiving a warning

* no brake around the time of a warning

Warning reason

* pulling into a bus stop

a decelerating or stopped lead vehicle

another vehicle cutting in from the left

another vehicle cutting in from the right

the road curving, trees and/or guardrails

poles and/or signs

Driver comment (obtained by human factors researcher riding on the bys
* The driver liked (thought the warning was appra)ia
* The driver did not know what the warning was for

e The driver made no comment

The driver expected the warning

The driver thought that the warning was late ortedra warning

Using the above selections it is possible to syowiae driver feedback with video and
engineering data to gain a more comprehensive staaeling of patterns of drivers
opinions of individual warnings. It is also possiltb determine scenarios where drivers
like and dislike warnings as well as take a look saenarios where the driver

wanted/expected a warning and was not given one.
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Figure 68 Mark tool sub-window

The simulator and the data-marking tool allow tlseruto study various variable of
interest in an integrated way, providing the dataewer with such a complete set of data
collected at the same time

6.6.4 FCWS Analysis Procedure

A standard procedure is proposed for compreherasiedysis of four warning scenarios
(True, Miss, False, and Nuisance warning). It ideli basic technical analysis, warning
timing/consistency analysis and driver feedbacKysma The basic technical analysis is
to recreate the warning scenario in detail. By Wwiaitg the video clip and analyzing the
variables mentioned below, we try to evaluate theueacy, smoothness and noise
characteristic of the measurement, estimation aadigion of the host bus and targets
(Bus track and target tracks) and try to improwe glistem in every aspect. The ultimate
goal of the warning timing/consistency analysisoischieve good warning timing and a

high level of system consistency. For example, veallds examine if a true warning is
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issued too early or too late from both the tecHmeént of view and the driver’s point of

view. If there is inconsistency, it could resulbrir either threat assessment or the delay

factors listed in the table, which would then befagtor for further testing and

investigating. Furthermore, the driver's feedbaskvery important for us to adjust,

evaluate and improve our system.

True/Miss/False/Nuisance/ Warning Scenario Analysis

Basic technical variables

Timing/Consistency and

Feedbacks
Measurement | Estimation Prediction From data From divers
Road Geometry N/A N/A Brake Pressure .
: : Comments for this
Weather(wiper) N/A N/A Bus Heading ) .
particular warning

Bus headway speed and yaw rate

Throttle Position

Target lateral and longitudinal position and speed

(relative to the bus)

Sensor Delay
Processing Delay

Driver Reaction time

Bus/Target location, heading, )
. Compensation/
N/A headway acceleration, angle
_ _ Prediction time
acceleration, height
Sensitivity level
ARQ, TTC, Warning duration
N/A N/A ' .
Inv. TTC, etc Starting/End time

Warning level

Suggestions for
similar warnings of
this kind:

Warning timing
Warning level and

Duration, etc.

6.7.

6.8. SCWS Data replay tools

Table 25. Standard analysis procedure and main vaables

The data collected by the SCWS is stored in maltghfferent files. Each file represents

a single stream of information. These include:
1. Vehicle State
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Raw range data from line scanners and curb sensors
Tracked and classified object information

Tracked and predicted curb information

Warning levels sent to the DVI

Auxiliary bus information, such as doors open/ctbaad signal status

N o g M wDd

DVI information, such as which lights have beerahid which buttons have been
pressed
8. MPEG movies derived from the cameras pointed foaveard backwards on each

side of the vehicle.

Each data stream has the same underlying formatect&y the same underlying tools: A
set of arbitrary data records where each recordoisjust tagged with the time of

collection, but is indexed by it. The distinctibatween tagging and indexing by time is
important: If each record was simply tagged witheiwe would have to search through
an entire file in order to find a particular rec@tda particular time. Instead, we maintain
a time based index for each data file that is |dao memory at startup. When we
want data from a particular time, we look up in time index where in the data file the
necessary record is, and retrieve that record ftwarfile. The cost, of course, is in the
up-front time and memory needed to load in the ifléex, but we find that modern

systems can read in the index of a file with thadsaof entries collected over hours in

seconds without taxing the system's memory requargsn

The data replay system takes full advantage ottmemon, time-based data access and
replay tools. At any given time there is a synthéteplay time" estimate, i.e., the
current time of the data we should be showing ®uker. For each data stream that is
being displayed, we simply use the index to lookanp obtain the appropriate data for
the current replay time. Not all data will be dabie at every instance in time, so when
necessary we use common tools for shifting the desgglay by the appropriate vehicle
motion. For example, if the most appropriate pietcebject tracking information is 100
milliseconds before the current replay time, we adjust the display of the object track

display to account for the motion of the vehicledbyfting the display of all the tracked
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objects by the distance and direction that the clehhas traveled in the last 100

milliseconds.

Thus, the temporal and spatial synchronizationhef inany disparate data streams is
achieved in a straightforward manner by the reghgstem. In addition, the approach to
data replay lets us provide the users with movagyeqatlike controls, whereby they can
vary the flow of time, pausing, fast forwardingowing down, and even moving
arbitrarily around in the data using a scroll bdio the end user, it all looks like one
unified data source that can be accessed likeghesinovie. For displaying data, we have
taken as our inspiration web browsers, which prexadramework of common tools and

constraints for displaying fairly arbitrary infortn@n with plug-ins.
In our data replay system we provide two main outpadalities: The 2D OpenGL-based

overhead view of the data and the data overlaithervideo we store from the forward

and rear looking cameras.
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We provide a common framework to develop fairlyitagoy plug-ins for displaying data
in these two output modalities. Each plug-in cenplement methods for displaying
overhead data or overlay data. The user configieesystem to choose and configure a
palette of these plug-ins for displaying the vasiaata streams, and can select in real
time whether to hide or show any individual dataan display. This allows us to have
an almost arbitrarily expandable display systememhwe can introduce new data
modalities and manners of displaying data in anoatnarbitrary manner. Thus we can
have the display system easily evolve in the futunée still being able to display today's

data.

The data replay system can be used to exploreamyraollected data, but it can also be
used in concert with analysis tools. For examfhe, user can select beginning and
ending points in time and create a new data sdt gosataining data in this time
slice. This is not simply one file, but represetits appropriate sub-set of every data
stream in the display palette. The smaller dats & be easier to share and analyze for
development purposes. In addition, our off-linelgsia tools can go through a data set
and generate a list of "bookmarks" which can bdédanto the replay tool. The user can
then instantly navigate to these bookmarks to emarthe parts of the data set that the
analysis tools have marked as interesting.
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7 DVI DEVELOPMENT

7.1. Background: Transit Collision Warning Nuances
There are a number of transit operations charatitesithat make this development effort

particularly challenging. First and foremost, tiargperators routinely drive close to
other vehicles, obstacles, and pedestrians. Theefotwo are specifically related to the
size and handling of the vehicles in question d®&lldcales in which they operate. The
latter is due to events near bus stops where driaver expected to pull close to the curb,
thus coming into close proximity to waiting patroasd other pedestrians (and fixed
objects like bus shelters). The challenge that dtipisrating environment presents to a
collision warning system is to determine under wltattumstances a driver is
intentionally operating the bus close to other otsjeand under what circumstances a
driver is not aware of an object that poses a piatethreat that the driver should be

warned about.

Also worth highlighting is the environment the dnvoperates in and the perceptual
demands that accompany transit tasks. Instrumempare often mounted very low and
out of sight for most drivers. Shifts are long, ahé environment is noise rich, with
many other audible warnings, passengers, and letigs. Visual search is extensive; bus
drivers are required to track many more visualgtgdgn their field of view than their

counterparts in passenger vehicles.

Finally, transit operators often encounter riskipdngor on the part of nearby drivers and
pedestrians. For example, it is not uncommon fbicles to speed past a bus on the left
and then cut in front, only to immediately turnhig

7.2. Guiding Concepts
Previous work towards a driver-vehicle interface/{Punder this program identified

three major paradoxes present in transit collisiaming interfaces"?

13 Steinfeld, A. FCWS Driver-Vehicle Interface Drivend Trainer Input and PRELIMINARY Design.
California PATH, U. C. Berkeley. Unpublished, 2001.
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1. Drivers agree with the philosophy of earlier actrather than harder action yet
they would like as few alerts and warnings as fbssi

2. Nighttime drivers prefer audible warnings due ton@@rn over glare while
daytime drivers tend to focus on visual warning .

3. The warning should be salient enough to elicitimedresponse but should not be

readily noticeable by passengers.

It is important to keep the tradeoffs inherenthage paradoxes in mind when developing
such systems. While often suggested by technokgaiv to the field, vibration displays
in the seat or steering wheel have traditionallgrbstrongly discouraged during driver
interviews due to long shift durations. For exammae driver commented, “After 8
hours | don't have any idea what's going on dovereth’* In addition many drivers
report that when doing long shifts they constamtiange their seating position, often
times sitting at an angle which would make positigrof a vibration display for forward

and side warnings problematic.

Other items of note are concerns that warnings achys a “starting gun” for fraudulent
falls by passengers (a very real problem) anddHhagh rate of false alarms will lead to
severe dissatisfaction with the system. These ecoacpoint towards a DVI that is

discreet, not obnoxious, and isolated to the dsveersonal space.

Furthermore, it is necessary to provide a leveldofer control so that individual
differences and environmental factors can be accwated. As such the FCWS DVI
preliminary specification recommended that drivli@ve the ability to modify the
brightness and volume of displays to suit their dse® However, there was also
specification that drivers should not be able te ssich adjustments to disable the

system. Outside reviewers of the preliminary speatiion concurred:

14 Steinfeld, A. FCWS Driver-Vehicle Interface Drivend Trainer Input and PRELIMINARY Design.
California PATH, U. C. Berkeley. Unpublished, 2001.

15 Steinfeld, A._ FCWS Driver-Vehicle Interface Drivend Trainer Input and PRELIMINARY Design.
California PATH, U. C. Berkeley. Unpublished, 2001.
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“The idea of ‘only one modality can be off’ may rmtly be smart but also wise.
This option allows some accommodation to the peuspdiversity of drivers;

some may prefer auditory over visual warnings and versa.™®

As such, this design feature was carried forwamdtl@ integrated DVI. Subsequent

feedback from PAT employees reinforced this phipdso

7.3. Warning Design
There was specific care to utilize multiple levelavarning for both the side and forward

components. This practice has been suggested armessfully deployed in other
intelligent vehicle research (e.§’, 8 *° ?%. Previous iterations of the forward warning
systems investigated the use of a three color lexshing system (red, amber and
yellow). However this was reduced to two level mfteavers commented that it made the

display “too busy” and that they did not find thtzer color alerting enoudf.

DVI activation is consistent across the forward aide components. As the Under
Wheel case is considerably more dangerous thanaCint has been assigned the red
option.

1. Alert: Yellow LEDs.

2. Imminent WarningRed LEDs.

18 Mitretek. FCWS Driver-Vehicle Interface Driverdiirainer Input and PRELIMINARY Design
Comments and Observatiotdnpublished 2001.

" Graham and Hirst. “The effect of a collision awanide system on drivers' braking responses.”
Proceedings of the 4th Annual Meeting of IVHS AmarWashington, DC: 1994: 743-749.

18 wilson, Butler, McGehee, and Dingus, “IVHS counteasures for rear-end collisions, driver warning
system performance guidelines.” Proceedings ol 86 Annual Meeting of ITS Americd996: 949-957.

¥ Dingus, Jahns, Horowitz, and Knipling. “Human fastdesign issues for crash avoidance systems,”
Barfield and Dingus eds. Human Factors in IntefiigEransportation SystemNew Jersey: Lawrence
Erlbaum Associates, 1998: 55-93.

2 steinfeld and Tan, “Development of a driver agsitrface for snowplows using iterative design.”
Transportation Human Factors, vol. 2, n02300: 247-264.

ZLWwang, Chang, Chan, Johnston, Zhou, Steinfeld, étanad Zhang. Development of Requirement
Specifications for Transit Frontal Collision WargiBystemUnpublished August 2003.
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3. Contact The triangles for the appropriate side blink gl
4. Under WheelThe triangles for the appropriate side blink red.

The DVI hardware includes integrated speakersen fiD assemblies in order to reduce
the installation requirements of the system. The afssounds to augment the alerts is
being examined in related simulator research. @tlgrethe plan is for sounds to be
issued for all stimuli except Alert. However, souisdnot present in the first version
provided to the drivers due to the belief that sbwhould only be available if the
warning algorithm is working well. Sound is curdgnplanned for deployment later in
the field test. For related reasons Contact andeUki¢heel will be introduced later too.

See the Plans for DVI evaluatiohsection for additional detail.

No warning yields to warnings immediately. For eadte, independently, the order of
priority is as follows: Under Bus, Contact, ImmimeAlert, none. A 10% probability of
contact (POC) hysteresis with a bias to higher H®@sed for level decreases from

Imminent or Alert to prevent border oscillations.

7.4. Interface Design and Placement
The DVI design implemented on the ICWS buses iatiegrthe forward and side warning

stimuli into a unified display ( Figure 71). Thenf@ard portion is an adaptation of a
similar design utilized for low visibility snow reswal operations [Steinfeld00] while the
side warnings were developed specifically for gleform and application. This display
involves two LED assemblies, one mounted on theAgdillar and the other mounted on

the center window pillar. A control box was installnext to the instrument cluster.
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Left l Right

Forward Alert

Forward Imminent

Side, front

Side, rear

Figure 71 Integrated DVI. The forward LEDs grow downwards with threat level and “aim” at
threat. The triangles point towards the relevant mirors. Bars are mounted on the pillars of the
driver’s forward window

When viewing the DVI the physical “location” of thgiver with respect to the spatial
representations of the LEDs is in the middle oftthe DVI bars, between the lowermost
forward LED and the “Side, front” LEDs. The barg atesigned for the window pillars
immediately in front of the driver, thus providiray peripheral display that does not
obscure the driver's external view of the road scé@rhe placement also supports rapid
checking of the side mirrors — an action much nigrguent in transit operations than in

regular passenger vehicle operation. Digital DVipoiis are refreshed every 75ms.

Driver controls are mounted as a group in the umsént cluster (Figure 72). Volume,
brightness, and warning sensitivity (high, mediloay) provide a level of driver control
so that individual differences and environmentatdes can be accommodated. However,
the system is designed so that drivers are not t@blese the volume and brightness
adjustments to disable the system. Status lightthEothree regions (left, front, right) are
also provided for quick identification of systemahlib. The controls include a

Contact/Under Bus Override button for acknowledgeinoé these alarms.
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Figure 72 The DVI control box. The toggle sets thsensitivity, the knobs control volume and
brightness, and the lights provide status informatin. Overrides are activated with the red button

7.5. Examples of DVI Behavior
Forward component

The bars illuminate sequentially from top to bottéonindicate an approaching threat.
Depending on how imminent the threat is some coatlan of the first segment and the
first four segments will sequentially illuminate ben. The greater the number of
segments illuminated, the higher the threat. Toicetd an imminent warning the
segments will change color to red and as the threadmes more time critical will grow

to the full length of the display.

The two forward displays show the angle of the gsathreat to the bus. When the left
display is lit the object is forward to the left thfe bus. When the right display is lit the
object is forward to the right of the display. Whee object is directly in front of the bus
both displays will be lit.
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FCWS Alert Mode
Pictorially, forward alert
on right side:

FCWS Imminent Mode
Pictorially, Forward
imminent with no lateral

bias:

Side component

The boundary line between side front and side iee#lie plane that passes horizontally
through the bus at the front wheel. The mappinDdf side subcomponents to warnings

is as follows:
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Condition 1 2 3 4 5 6
Left Front Alert Y

(front wheel forward) | Imminent R P
Right Front Alert Y

(front wheel forward) | Imminent R P
Left Rear Alert Y

(front wheel back) Imminent R P
Right Rear Alert Y

(front wheel back) Imminent R P
Contact Left BY |BY A

Right BY | BY A

Under Wheel Left BR | BR A

(less than 5mph) Right BR | BR A

eft Right

L
1 Side, front 2 Y = Yellow
3 Side, rear 4 R =Red
B =Blink at 2 Hz
g 5 Speakers 6 g

P =Percussive sound (e.g., chime)
A = Aggressive sound (e.g., buzzer)

Table 26. Mapping of DVI side subcomponents to waings

In the event that the side component detects ah lalesl threat it will trigger an Alert
Side warning. The triangle shaped LED for the appabte side and front/rear position
illuminates.
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SCWS Alert Mode
Pictorially, left side front
alert:

In the event that the side component detects aniriemh threat it will trigger an
Imminent Side warning. The triangle LED for the eppiate side position illuminates

red at highest brightness level. The Imminent wagrsiound plays.

SCWS Imminent Mode
Pictorially, right side rear
imminent:

In the event that the side component detects asiooil event it will trigger a Contact

warning. Both triangles for the appropriate sidenilinate yellow at highest brightness
level and blink at 2 Hz and the Contact warningngbplays. The driver is then expected
to check their mirrors and decide on an appropratase of action. Should the driver
determine that the warning is a false alarm, pngssihe Contact/Under Bus Override
button will turn off the alarm and suppress contdetection for 10 seconds. As

previously mentioned, the button must be fully asked before being activated again.
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Under Bus warnings are the same as Contact warexgspt the triangles are red and
the Under Bus warning sound plays. Under Bus wgshonly occur at speed less than 5
mph. The driver is then expected to check theirarsrand, if necessary, stop and exit
the bus for closer inspection. Should the driveteeine that the warning is a false
alarm, pressing the Contact/Under Bus Overrideobutwill turn off the alarm and

suppress contact detection for 10 seconds. Asquslyj mentioned, the button must be

fully released before being activated again.

7.6. Plans for DVI Evaluation
On-board collection of driver behavior data willopide insights to the utility of an

assistance system and the potential for safetyfibeBach data is most effective when

collected during field-testing in real world drigrtonditions as is currently underway.

DVI evaluation will include a longitudinal humanctars analysis of driving behavior.
The two states of data collection are (A) BaselD¥I off, but system on and recording
and (B) Full System DVI and system on and recaydirhese states are being cycled for
periods of about 3 months where (A) will only be first few weeks of each cycle. The
initial baseline (A) will be slightly longer in order to ensure coresidble initial baseline

data.

This experimental design will allow measuremensydtem benefit (Avs. B), behavior
shift (A1 vs. A), and system dependence (B. A). These will be crossed with specific

scenarios that are identified as interesting wapect to integrated CWS transit DVIs.

As previously mentioned, sound and the Contactlamdier Wheel alarms are not in the
initial version (A). These features will be deployed in the seconthiod cycle/version.
Besides providing room to allow robust warningstalso permits limited comparison of
visual+audio andvisual onlytransit CWS and the impact of added alarms (Agyvs.
A, etc).

Surveys and interviews will also be employed toemtl data on the DVI in order to
collect driver, maintenance, and operations pergeptof the system. This technique is

7-190



also useful for identifying system weaknesses amdasa where training and
documentation for the system may need to be maldifiddditional insight on

extrapolations to larger populations can also lheexed through such documentation.

Schematic for each Segment

Yellow on

—\/\/\,— Section on

120 Ohms ~ Dimmer

s Watt

Red on
Section on
Dimmer

150 Ohms
Ya Watt

Red
Yellow

245
cm

Left DVI Right DV

Figure 73 Component diagram of LED assemblies
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8 DATA ANALYSIS AND EVALUATION

8.1. FCWS Data Analysis
The main purpose of the following data analysisoisecreate the warning scenario in

detail from a technical point of view. By watchitige video clip and analyzing the

variables, such as host-bus/target speed/headosigaation, we gain an understanding
of the accuracy, smoothness and noise charaatevisthe measurement, estimation and
prediction of the host bus and targets (Bus trauk target tracks). By this means, we
determine areas in which improvements to componehthe system should be made.
For example, by looking at the raw speed data wmdothat the speed measurement
resolution was degraded at low speeds. In our n€dOR version, the three-channel
speed measurements will improve the measuremeoiutiesm at low speeds to address
this issue. Generally, improvements in hardware aystem software lead to more

precise measurement. Improvements in algorithm read to better estimation,

prediction of the tracks, scenario parsing andahassessment.

Hardware/Software/Algorithm

Improvements

Field Data
Analysis

Figure 74 The goal of field data analysis

In this chapter, three typical categories of wagnscenarios are analyzed using a three-
step quantitive approach. They are:

1. Moving/stopped target in front on a straight road;

2. Stationary roadside target on curved road;

3. Overhead obstacles on declined/flat road
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Warnings that fall within the first category arensaered correct warnings. The second
category warnings are considered false positiveu@ance warnings A nuisance warning
IS a warning given in a case that a collision isettly forecasted, but that the operator
does not consider the situation to be a true piadethreat to the bus. The third category
is considered a false warning as the bus is in aoger of hitting these overhead
obstacles.. Characteristics of three categoriesvarhings are analyzed and possible

solutions for the later two categories are proposed

8.1.1 FCWS Three-Step Quantitive Approach

A Three-Step Quantitive Approach for data/warnicgnario analysis is developed to
analyze the warning scenarios.

1. Check if the weather is good when using LIDAR datanalyze the scenario, and
then use a Fault Detection Tool to check the hostdensor data and the LIDAR
data, making sure they are not corrupted.

2. Use Scenario Analysis Tools which recreate the imgrnscenario by
demonstrating the bus/target location/speed/aa@erheading/ARQ (required
acceleration)/raw data in both a snapshot andectomy manner.

3. Use a playback tool to review the video clip, shayvihe warning scenario in

video format.

8.1.2 FCWS Warning scenarios categorization

Before any analysis is conducted, a comprehensigekcof the data is necessary. If it is
raining/snowing or foggy, the LIDAR will not funcin well and the RADAR will take its

place. The host bus sensor data needs to be chéckedsure that all sensors were
working properly. Generally, the FCWS warnings fatb three categories based on road
geometry and target property (as shown in the viofig table). Scenario A, B and C are
analyzed below with data from Sep. 22, 2003, whigs a sunny day. Both host-bus

sensors and LIDARs worked well.
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R Slightly Bridges/Traffic Signs
0

Straight | Curved Overhead
Target

/Curved Declined road/Flat road

Moving/Stopped | A - -

Stationary - B C

Table 27. Warning scenario category

8121 Scenario A

Scenario A is considered a TRUE WARNING. In theldaing example shown in

Figure 75 of Scenario A, there are some road wahead of the bus and the leading
vehicle was decelerating while the host bus maiethia nearly constant speed. The
warning started at 10:21:17. The following camdnats show the “road work ahead”

sign and a snap shot of the warning scenatrio.

In addition to the simulation tool introduced irepious chapters a further simulation
program was developed in Matfdbto recreate warning scenarios. The simulation
program is MatlaB" version of the real time program installed on bses with some
slight differences. Using high-level language pemgming, it is much easier to show the
bus/target location/speed/acceleration/heading/ARQuired acceleration)/raw data and
recreate the warning scenario in a trajectory manfas tool is also used to test new
algorithms, add more scenario parsing functionsathdr sub-routings before integrating

them to the off-line simulator using C language.
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Frontal camera view Passenger side camera view

Video time DVI bar

Sensor time g
ng a Frontal looking \

e 410:21:18 Measurewent: Flidar:s Fradar':-x_-’

Bus/Obstacle State Prediction 1.2s:
DX,DY:m V,RV,Speed:m/s A,Heading:Degree AL:m/s/s Sensi.=4

120
Bus State Estimation: i

1]
Speed=13.2 Heading=174.1 AL=-0.6 A Bus Panel m
0.5 60

Bus/Target bird view Acceleration Brake pressure

Figure 75 Warning scenario snap shop (note target I85: the leading vehicle)

Figure 76 shows ten samples of Target/Host loodtiap-left figure), Target/Host Speed
(top-right figure), and Target/Host accelerationdghe-left figure) before and after the
instant a warning was issued. Figure 76 also st@wsamples of brake pressure before
and after (middle-right figure), and required decafion (bottom figure) before and after

the exact instant when the warning was issued.
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Figure 76 Technical variables

As we can see from the figures, the target veh@s decelerating (the red line in the
top-right figure keeps dropping) at a deceleratrate of about 2.5m/s/s. The bus,
however, maintained an almost constant speed (adrgmtightly) of about 13.5m/s with

a deceleration ranging from 0 to 0.5m/s/s. At #v@h sample, the required deceleration
exceeded the threshold of 1.8m/s/s, which mearheifbus continues at the current
driving status without more deceleration (for exéanpressing the brakes more), 1.2
second later, a deceleration greater than 1.8mill/ee needed to avoid a collision. This
is considered a dangerous situation. Thereforewdraing was issued starting from the

tenth sample (at 10:21:17). (The sample intervar3ms). From the brake pressure
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figure, we can see that the brake pressure inatedsenatically after the tenth sample,
because the driver did press the brakes harderthéievarning was issued.

The warning continued at 10:21:18 and 10:21:19:

18:21 :

Frontal view Passenger Side view

The warning ended at 10:21:20.

Frontal view Passenger Side view

Figure 77 Target vehicle Decelerating

Figure 78 shows ten samples of Target/Host londtimp-left figure), Target/Host Speed
(top-right figure), and Target/Host accelerationddhe-left figure) before and after the
moment the warning ended. The figures also showa2iples of brake pressure before
and after (middle-right figure), and required decatfion (bottom figure) before and after

the exact moment when the warning ended.

As we can see from Figure 78 , although both th& bas and the target vehicle are
decelerating, the host bus speed is greater tleatatget vehicle (See the top right figure,
both the blue line and the red line are droppititg, deceleration of the bus is changing
from less than the target vehicle to greater thantarget vehicle (see the crossing of the
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two lines in middle left figure). At the tenth sal@pthe deceleration of the bus is about
0.4m/sl/s greater than the target vehicle (a mimrs should be added if referring to the
acceleration), the required deceleration is 1.3r(ls#low the 1.8m/s/s threshold), which
means if the bus continues its current drivingustatl.2 seconds later, the situation will
no longer be considered dangerous. Therefore settact moment, the warning ended.
From the brake pressure figure, we can see thabrtiee pressure started going down
after the tenth sample and decreased dramaticalty the 18 sampling point, since the
driver did release the brakes after the warningednd

370 13
360 tbgﬂm%&mr 12 B\B\B\B\B\B\B\B\B\Q
—— Target location 11 —— Target V
£ 350 —5- Host location é —= HostV
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— -~
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12— 2.7
—— Target AL 26 / S NH%\
1.4 —5 Host AL g < I A\
2 / \
N 8 25
216 Iy
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8 \
1.8 S J O
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S
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Figure 78 Technical variables
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8.1.2.2 Scenario B

Scenario B is considered a NUISANCE WARNING. Instldase, roadside objects,

especially those hard reflective traffic signs guoardrails could be dangerous if the bus
continued at its current heading, however in mases like these the driver is aware of
the street furniture, so a warning is not warrantdahimizing the occurrence of these

types of warnings has been one of the main issudbe development of the FCWS

system. In the example, shown below in Figure 7@&aening was issued at 9:53:04. It

was triggered by guardrails on the right side,thetvehicle on the other lane as shown in
the following analysis.

Frontal view Passenger Side view
The warning continued at 09:53:06:

T -

T g3 :53:85. 5

09:53:06 Measurement: Flidar:s Pradar:+

Bus/Obstacle State Prediction 1.2s:
DX,DY:m V,RV,Speed:m/s A, Heading:Degree AL:m/s/s Sensi.-4

Bus State Estimation:
Speed=15.9 Heading=53.6 AL=-0.3

Figure 79 Warning scenario snap shot. Note the warng trigger- target ID 145 in red, not target ID
156 in yellow which is the leading vehicle
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The warning ended at 9:53:08.

Frontal view Passenger Side view
Figure 80 Nuisance warning ends

Basically, when the road is curved or the bus drivekes a lane change (to the
right-most lane), if there are stationary roadsudgects ahead, especially those hard
reflective traffic signs and/or guardrails, whicte aensitive targets for the LIDARS, it
will look as if the bus were heading towards thobgects, also, since the system needs to
predict 1.2 second ahead to compensate the seelsgrahd give the driver enough time
to react, a warning will be issued. It is calleduasance alarm because if the driver were
distracted, thus did not change the bus’s headutgrdémained going straight (in the
curved road situation) to the right (in the laneamling situation), the crash would
happen. However, most of the time, the diver islamg and will change the heading
when confronted with curved roads and will go gindiagain after changing lanes. These

warnings are explainable but some drivers may thean annoying.

The trajectory of the bus and the target are plotteFigure 81. Blue squares represent
the bus trajectory, green squares represent theieaing on the left side, yellow squares
represent road side guardrails, “yellow” represeénésobject that triggered the warning.
Note that the up and down motion of the guardradlswcaused by noise in the
measurement. As is shown in the figure, the cathenleft did not trigger the warning.
(The “green” represents a “safe” track, which dat trigger the warning). This figure
also shows why a comprehensive analysis tool isust.nWithout the tool it is hard to

determine the correct cause of the warning.
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Figure 81 Trajectories of the bus and the targetsraund

There are three areas where additional informatounld help us solve the above
challenges.
1. Road geometry.
For example, digital maps may tell us the curvanfréhe road ahead and help the
system recognize if the obstacles are in lane btoblane. If it is out of the lane, we
could apply a smaller probability factor.
2. Driver status.
This information is hard to get. If the driver iggNant, these nuisance warnings
could be annoying or distracting. However, if thever is distracted, these nuisance
warnings will be good warnings. Given the drivaatss, the system could utilize this
information and decide if it should issue thesenivags.
3. Target property and crash data analysis result.
If street furniture such as guardrails could benidied by use of a GPS/digital map
system, and crash data analysis showed that ther@ery small possibility of a bus

hitting a guardrail then the system could applynal probability factor when seeing

8-201



those guardrails in a curved road, which may dranaly reduce the nuisance-

warning rate.

] Stationary
] Roadside objects

Prediction:
1.2 second\ahead

Road Geometry; Driver Status; Target Property and accident data analysis

Figure 82 Problem: stationary objects along curvedoad

8.1.2.3 ScenarioC
Scenario C is considered a FALSE WARNING. In theecahown below, the LIDAR

detects objects right in front and it looks ashié bbus were going straight towards the
overhead obstacles. If it were not for the declinead, the LIDAR might not see the
bridges since they are higher than the bus (aldmeitound). The required deceleration

will rise sharply as the bus maintains constanedpehile passing the bridge.

20 - Bridges,
/ Traffic signs

~ ‘ —— Required deceleration ‘

£ 10
=
5

EFE}E‘EHB"V

BUS 15 BUS

O L L
0 5
@ Sample number

Declined road /

A
A 4

Figure 83 Problem: Overhead obstacles

8-202



As shown above, in this particular case, the dewajinroad and the overhead
bridges/traffic signs faked a threat to the host. blhe system incorrectly predicted a
potential collision, as it did not have the infotioa about the road geometry. Another
similar case could occur with overhead traffic siginat are higher than the bus on a flat
road. As the bus may pitch slightly due to différesad surface condition, it is hard for
the sensor to get the accurate height informatibthose “obstacles”. Detailed road
geometry information may help us solve this probl&¥ith the help of a detailed digital
map, if the system knows that the target detectgd n front is an overhead bridge and
that the bus is on a declining road, or the systeaws that the detected target is a traffic

sign hung above, it will not issue the false wagnin

8.1.3 FCWS Summary

The FCWS warning scenarios are categorized andyzsthl using a three-step
guantitative approach. The three scenarios includeving/stopped target ahead on
straight road; stationary target roadside on curvedd; overhead obstacles on
declining/flat road are analyzed. Improvement waadento the algorithm to include
features that turn the nuisance warning to a flieneiminder. It is believed that, road
geometry information (e.g., more precise GPS amytadimap system), driver status
information, target properties and crash data amglypome of the nuisance induced by

curved roads and overhead obstacle problems ceutddércome.

8.2. SCWS Data Analysis
Custom analysis tools have been developed for exaion of data generated by the

SCWS component. These tools can be used in coguneith the SCWS Data Replay
tool for visual inspection of events and/or systeehavior. There are two types of tools
in use: driver behavior analysis and system delmgggnd development. Both will be

described here.

8.2.1 Driver behavior analysis

Part of the evaluation of the collision warningtsys is to assess if and how the behavior
of the driver changes. There are several ways ofgdthis, e.g. one can monitor the

frequency and severity of dangerous situationss €an be done for complete runs or for
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particular maneuvers. We developed analysis todlswhich we can pick out particular

maneuvers and accumulate relevant statistics.

The analysis tools are flexible and can be custedhito analyze many different

maneuvers. From a high level, the data and viddeated on the bus during operation is
stored in a RAID on the CMU campus ( Figure 84)isTdata, which is read-only, is fed

to the Analysis Tools — custom filters and collattihat compose data from the RAID
based on specified Event Definitions. Compiled Ev@ata consists of data snippets
collated as a series of events. Each event haslartawk for the beginning time stamp of
the event. Experimenters can review the video ést@an the RAID) for each event by
jumping to the bookmark in question. For the pugsosf behavior analysis, the Analysis
Tools extract and compute selected driver behadada for subsequent processing in

traditional statistical analysis software.

' N
Bis System DVI Event Definition —¢
\
W = ( )
Local Storage T P Analysis Tools
Regular Data & Video | > TR )
Low level log (raw data) | CMU RAID +
Event Data
Event
! Bookmarks
Behavior Data
Replay Tool
[ Behavior Statistics ‘

Figure 84 Data flow for driver behavior analysis

The most important part of this process is the ifipation of the event the experimenter
wishes to examine. As an example, we will lookhat évaluation measure “Time within
each CWS DVI category” (see Table 28. Evaluatioriride (MOE's)]) for the scenario
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where a bus pulls out of a bus stop and we wamhaaitor the level of danger. We

specify the scenario in the following way:

1. The priming condition “bus stopped and door is open” has to be fulfill€dis
ensures that the bus has stopped at a bus stoptsEneed to be specified
mathematically. As such, we would specify that bpeed is below 2 mph and the
door open flag is true.

2. When therigger condition “bus starts to move” is fulfilled (e.g., speed mh),
we start to record data: time, speed, turning gdiund probability of collision
(see section 6.3 SCWS Warning algorithm). The poditya of collision is the
measure of danger.

3. Thestop condition is fulfilled when the bus has traveled a set distaand we
stop to record data. For example, we may indidadeé the bus has traveled more

than 5 m.

The Analysis Tools then compile the recorded ewdata and additional (specified)

optional computations may be run to see what dalegefs are present for other system
or custom sensitivity settings. Bookmarks are alwwed so experimenters can quickly
jump to the relevant events. The output data e then be imported into any statistics
program (tab separated values) and time within @dtegory can be computed.
Independent variables, like driver set sensitiltyel and location, can be included in
this file so that behavior analysis can be parssmbralingly. A primary independent

variable, test or baseline data collection (DVIded/disabled) can be used for direct
analysis of system effectiveness.

Should macro scale data be desired (e.g., averageing level for an entire month,
regardless of scenario) then the event definitam loe set to a wide level. For example,
the priming condition could be system is powered U trigger condition be the
departure of the bus from the bus yard, and the gadition the arrival at the bus yard.
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The analysis tools are also used to monitor theesyg$or unusual statistics that can be
due to system failures. Metrics of this type inéwild fluctuations, infeasible warnings,

lack of warnings, etc.

The behavior analysis example here is one of theynparoposed metrics that will be
examined in the evaluation phase of this progratme Tollowing matrix lists the
additional evaluation criteria that will use thégels. An evaluation report will be written
at the conclusion of this program reflecting thesarics
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deployed time [Agency data]

Task Performance MOE Before/After MOE Measures of Interest
Time of alert
“é Time of warning
S Time of notify Daily precipitation
§ Latency Daily High/Low temps
8 Rainfall performance
n Environmental effects (salt spray, etc)
True positives Fault tree distribution
E é False negatives Scenarios parsing (multiple
é g True negatives events where at least one is
False positives bad)
* Behavior when within CWS DVI activation range
'% Time within each CWS DVI category [alert, warn]
© Hard accelerations (braking & swerving)
o Driver sensitivity setting
=X Frequency of warnings over time
E Normal following distances (front)
2 Probability of collision over time (side)
Nuisance alarms
w o | Driver sensitivity ratings/reports
Gg é Driver and management perception of safety | Did system prevent an accident? Relaying of passenger queries
3 E‘ benefit Self-reports of alterations in driving behavior and comments
S Satisfaction with system performance
Perception of system accuracy
MTBF
g’d Software detected component failures
% (perform appropriate actions upon failure) ]
w Failure mode taxonomy
£ MTTR _
‘3 Operability Time [correct, degraded, Component repair cost
g incorrect, not at all] vs. On time vs. Vehicle

Table 28. Evaluation Metrics (MOE's)

* Binned by DVI off (baseline) and DVI on time periods
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8.2.2 System debugging and development

As previously mentioned, analysis tools for testireyv algorithms are also used. These
involve generation of new data that are used inela collected data (Figure 85). Raw
low-level data from the lasers or other sensors lmamused to simulate new data, and
subsequently, new warnings or object traces. Thasebe visualized in the SCWS Data

Replay tool for performance assessment or comgiredtly to the real counterparts.

Bus System DVI »[ New Algorithms ]
Local Storage CMU RAID
Regular Data & Video
Low level log (raw data)
New Data

U S— .
—_

Replay Tool

Figure 85 Fusion of new data from test algorithms vth real data

This process is especially powerful in testing nBATMO and SCWS warning

algorithms. The ability to view the results fusedhworiginal video and supporting data
(e.g., speed, etc.) provides a good first pasgdatitative performance judgments before
conducting labor-intensive comparison analyses.example, a particular data segment
may include a stereotypical false alarm that athori developers are attempting to
prevent. Visualization of algorithm performance idgrthis segment can be especially

telling when trying to determine the root causeshef false alarm and progress towards
handling them.
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9 CALIBRATION AND TESTING

9.1. SICK Laser Scanner

9.1.1 SICK resolution and accuracy

The basic properties of the laser scanner are:

Angular range: 180

Angular resolution: 0%or 1.0

Range: up to 80 m

Range resolution and accuracy: 1lcm

Update rate: 37.5 Hz or 75 Hz (depending on amgula
resolution)

The manufacturer claims that the resolution andiaoy of the SICK laser scanner is 1

cm. In the following sections we will test this ioha

9.1.2 Definition of terms

Following are important terms for our discussion:
Resolution: Minimum separation necessary to distinguish twoedlsj or
minimum displacement necessary to notice movenfesat object.
Error, uncertainty, deviation, accuracy: Synonyms for differences between
measured and actual property.

Standard deviation: Quadratic average of the differences:

(1)

where n is the number of measurements and X is the mean of the

measurements.

If the functione(x)describes the error distribution, the standardadiewn is:
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1 > A3
o =[;[e0)?dq? 2)
with the normalization factor

N = j e(X)dx (3)

9.1.3 Error characterization

The basic nature of errors of a sensor can beredeirom its working principle. The
laser scanner scans a range of angles and foraggtbh it determines the distance to the
closest object by time-of-flight (TOF). Since thensor scans the angles, it makes only
sense to talk about its angular resolution (whigh loe chosen to be 0.6r 1° but not its
accuracy. According to the manufacturer, its ramgsolution and error is 1 cm,
independent of the absolute distance. When a disthis measured, the actual distance
isd + 0.5 cm with all distances within this error rangeing equally likely. For later
comparison, it is useful to calculate the standiation (see Equation (2)):

Ad, =,/1/3[D5cm= 029cm (4)
A discussion about the characteristics of a simidaer scanner can be found in the
footnote below??

9.1.4 Experimental confirmation of resolution

In order to confirm the claims about measurementrerin the previous section, a
straight fixed object was placed in front of thes® and the distance to the object was
measured several consecutive times. Figure 86 stiosvdata for the laser scanner and a
linear fit through the data. The object extends&orangular range of about°s@pon
close inspection of the points one can notice sstafls, which are the result of the 1cm

resolution mentioned in the previous section.

22 Jensfelt and Christensen. “Pose Tracking UsingiL&sanning and Minimalistic Environmental
Models.” IEEE transactions on robotics and autoomatiol. 17, No.2. April 2001.
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Figure 86 Distances to a straight object measured by the laser scanndihe green
line is the linear fit to the data points.
The standard deviation of the points to the lirféas 0.68 cm, larger than expected from
Equation (4). But the object was not perfectlyigttaand it is likely that the difference
can be attributed to this reason.

Next the measurements of the same location atreiftetimes were compared. The
standard deviation of points measured at diffetem¢s is shown in Figure 87 under the
label “temporal”.

Also shown for each location is the (temporal) mehthe distance minus the average of

its neighbors:

Ad, =d, - (G * o) ;d“-l) @

9-211



Both quantities are 1cm or less for all points,sistent with the resolution of 1cm.

deviations of the SICK
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Figure 87 Error comparisons for the laser scanner.

9.1.5 Experimental confirmation of accuracy

Next we want to test for accuracy for differenttaieces. A target was placed at several
distances between 1 m and 45 m. The distance vgasifeasured with a measuring tape
and then compared to the distance measured byl@i€|&ser scanner. The result can be
seen in Figure 88 the standard deviation of théemihce between the two measured
distances is 1.5 cm. This deviation contains theertainties related to the target. The
target was not entirely flat and it was only eyédahlto ensure that it is vertical. The

standard deviation of 1.5 cm can therefore be demnsd consistent with an accuracy of
the SICK of 0.3 cm (Equation 4) over the range ol
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Figure 88 Distance to the target measured by the 6K versus measured by tape.

It needs to be mentioned, that the SICK is onlyueste when the light pulse hits a flat
surface. It has difficulties at edges of objectewlthe footprint of the laser pulse hits
targets at different distances. In that case itpraduce a ghost point in-between the two
targets.

9.1.6 Summary

The claim of 1 cm accuracy and resolution has loeerfirmed for ranges of distances
(45 m), angles (39, and time.

9.2. Calibration of Scanner Position and Orientation
For the side collision warning system two SICK fesganners were mounted on the bus,

one for each side. The position of the sensor witipect to the bus coordinate frame was

determined using a measuring tape. The laser scaragemounted on the bus in such a
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way, that the orientation of its internal referefiganes is either parallel or perpendicular
to the axis of the bus reference frame. This way ribtation from one to the other
coordinate system is easy to be determined. Sraalition from exact alignment of the
yaw angle were determined in two different waysg finst was overlaying the scanner
data on a calibrated image and the second was cogphe bus speed with the residual

speed of fixed objects.

9.2.1 Calibration by overlay

In section 4.3.1.Zalibration of sensors we describe how several sensors are calibrated
together and finally their data are overlaid onmage. See the first figure in that section.
If the yaw of the laser scanner is not properlgradd it will show up as a misalignment
in the overlay. The yaw can be corrected by sintp& and error until the overlay is
satisfactory.

9.2.2 Calibration by residual speed of fixed object s

When a bus drives by a fixed object, DATMO will dirthat the relative speed of the
object is equal but opposite of the bus speeddflaser scanner is not exactly aligned,
then the relative speed of the object is not eyamtbosite i(e. rotated by 189, instead

it is rotated by more or less than 28This effect was seen during the evaluation of
Detecting and Tracking of Moving Objects (DATMO)segé section 9.4.2.2 Error
characterization of the full DATMO). We studied thetential of this effect in detail to
see, if it can be used for automatic calibratiortha laser scanner. This study can be

found in the next section Automatic external catlim of a laser scanner.

9.3. Automatic External Calibration of a Laser Scanner
It is important to know the position and orientatiof the sensors mounted on a test

vehicle in order to be able to have all the avddatata in a common reference frame.
The process of determining the position and orteatds called external calibration. It is
desirable to make that process as easy as possililee best case it should be done
automatically by the system. In this report we dsscthe possibility of automatically

calibrating a laser scanner.
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9.3.1 Calibration approach

Our approach is to compare the dynamic variableghef vehicle or vehicle state
(velocity, turning rate, etc.) with those of thenser. At first we will only consider the
two-dimensional case, i.e. the vehicle travels gutaae surface and the field-of-view of
the laser scanner is parallel to that plane.

9.3.1.1 Determining vehicle state

The vehicle state is determined by odometry (changeosition) and by a gyroscope
(change in orientation). Usually there is a bicydledel incorporated in the vehicle state,
namely that the lateral velocityy, in the definition below) is zero. In the derivatiof

the method this assumption is not being made, fibweréhe method is general and can

also be used to calibrate two laser scanners to@her.

9.3.1.2 Determining external sensor state

We are using SLAM (Simultaneous Localization And pgdimg) and DATMO
algorithms [Wang and Thorp€|to determine the external sensor state. In SLAM
successive laser scanner readings of the surrag;mdiom a moving vehicle are
compared and matched to each other. If the suriognd fixed, the movement of the
vehicle can be inferred from the change in the @ereading and the matched data gives
a map of the surrounding and how the sensor hagdniogm scan to scan. It is therefore
possible to determine for each time step the mwsdind orientation of the sensor relative
to its initial position and orientation. If movingbjects are present, they need to be
filtered out and tracked with DATMO. Details abdbe algorithm can be found in the

publication®*

9.3.1.3 Reference system

The moving (!) reference system is defined as ¥adlo

% Wang and Thorpe. "Simultaneous Localization angitag with Detection and Tracking of Moving
Objects." IEEE International Conference on Robadied AutomationMay 2002.

2 op. cit.
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AX

Figure 89 Vehicle and sensor coordinate frames

The vehicle coordinate frame i%,( W). The sensor coordinate frame (ys) has its
origin at (Ax, Ay) and is rotated by the angte The relationship between a point in the

sensor frame and the same point in the vehiclednam

Equation 22 X, = X, COS@) — y, sin(p) + Ax
Equation 23 Y, = X, Sin(@) + y, cos@) + Ay
E (DI//
//// \‘\ Ve
| ‘1
A\"M i /'/ ’,’/’
1 ’ w -7

Figure 90 Moving vehicle and sensor coordinate frags

9-216



If the vehicle is traveling with the velocity, = (vx,, v{) and rotating with the angular
velocity o, then the origin of the sensor is rotating wite #ame angular velocity, but

traveling with the velocitys= (vxs, vys) which is dependent o, o, AX, andAy:
Equation 24 VX, = (vx, — Ay [) cos@) + (vy, + Ax L) sin(@)
Equation 25 vy, = —(vx, — Ay [d)sin(@) + (vy, + Ax[d) cos@)

Having only two equations, the three unknowxs Ay, ande cannot be determined with
one measurement. One needs to make measurementiffésent translational and

rotational velocities.

9.3.2 Example implementation

We drove the Navlab 11 vehicle a distance of adfumeters on a course of curves and
straight lines and recorded for each the path ahatities ( Figure 91). As expected, the
angular velocities of sensor and vehicle are venyilar; their difference is due to

measurement errors.

2
20+ — sensor E
—— vwehicle 1.5
. oy 1 = 1
= af 1 i a5
10+ 1 O
0.5
-40 =20 ] 0 10 20 30 40
¥ [m] tirme [=]
1.5 10
1 =
o = 0
£ 05 =
(a3
= B 5
o = .10
0.5 -15
] 10 20 30 40 0 10 20 30 40
time [s] time [=]

Figure 91 The path and the velocities recorded byhe vehicle and the sensor in the fixed coordinate
frame. The two paths are aligned according to theasult of offset and orientation of the sensor.
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9.3.2.1 Initial step

First we selected all the instances where the angelocity is close to zerm& 2°/s). If

we assume the angular velocity is exactly zeroaiqn 24 and Equation 25 become:
Equation 26 VX, = VX, COS@) + vy, sin(@)
Equation 27 vy, = —VX, Sin(@) + vy, cos@)

Which is simply the rotation equations amds therefore the angle betweeyandv,. We
calculate this angle for each of the selected mt&ta and then get our initial estimate
from their mean value. In Section 9.3.4 we discumsous methods besides the mean

value which can be used to determine

9.3.2.2 lterations

If one hasp, the values oAx andAy can be determined from Equation 24 and Equation
25:

Equation 28 Ax = L (vy, cos@) +vx, sin@) - vy,)
w

Equation 29 Ay = a%(vys sin(@) — vx, cos@) + vx,)

On the other hand, fix andAy are knowng is:
Equation 30 @ = arctanygy, + Axw,vx, — Ayw) — arctanyy,,vx,)

The three calibration parameters can now be detedhiteratively:
1. Using all instances with small turning radii (< 10 m) and tleipusly determined value
of ¢ determineAx andAy by forming the median of their distributions.
2. Using all instances with large turning radii (> 60 m) andpiteviously determined value
Ax andAy determinep by forming the median of their distributions.

3. Repeat 1. and 2. until convergence is achieved.

In our example 3 iterations were sufficient.
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9.3.2.3 Results

The distributions ofAx, Ay, and¢ for the last iteration can be seen in Figure 92e T

resulting values using the different methods:

sensor orientation median: 0.50 degg mean: 0.37 degstd: 2.60 deg error: 0.36 deg
gaussian fit center: 0.49 deg sigma: 1.02 deg roref.14 deg
sensor del x median: 3.439 m mean: 3.424|m std0.844 m error: 0.113 m
gaussian fit center: 3.393m sigma: 0.158 m rer©.021 m
sensor del y median: -0.129 m mean: -0.153|m std0.296 m error: 0.040 m
gaussian fit center: -0.026 m sigma: 0.304 m rer.041 m

Table 29. Values for sensor orientationAx, and Ay

Summary:
AX =(3.39 +- 0.02) m Ay =-(0.03 +- 0.04) m¢ = (0.49 +- 0.14)

Remember that the errors are purely statisticaldandot include systematic errors.

The following positions were measured with meagutape, for the angle a target was
placed directly in front of the vehicle and measlungth the laser scanner itself:

Ax =(3.35+-0.01) m Ay =(0.0+-0.01) m ¢ = (0.75+-0.5)
The errors are estimates.

9.3.3 Special case: bicycle model

If one places the center of the coordinate at tiigll® of the rear axle of the vehicle, then
there is never a lateral movemewy,€0). This fact simplifies the equations.

If the vehicle travels straight, them, can be calculated fromy:
Equation 31 VX, = VXS2 +Vy52

And ¢ can be calculated according to Section 9.3.2.1iviy straight” means that>>
Axo andvs>> Ayw. Strictly speaking it is never possible to knowhése conditions are

fulfilled since Ax andAy are not known and one can not measure i§ exactly zero.

9-219



Nevertheless, one can always make some reasonsdlienption, i.eAx and Ay are

smaller than the size of the vehicle.

Onceg is known,Ax can be calculated from a simplified version of &itpn 28:
Equation 32 Ax = a%(vys cos@) + vx,sin(@))
It is therefore possible to determipeandAx without any vehicle state information.

9.3.4 Extracting the best value from a distribution

There are various methods to determine the begsewaid error of that value from a set
of measurements. We will discuss here the meanmibadian, standard deviation, and

fitting a curve to the distribution of measurements

oL | :
-2 0 2 4 B -1 0.5 o 0.5

delta x [m] delta y [m]

]
=20 -10 0 10 20
phi [deg]

Figure 92 Distributions of Ax, Ay, and ¢. Gaussian curves are fitted to each and are shovimred.

9.3.4.1 Mean value

The mean or average value gives a correct answviiee iflistribution of measurements is

symmetric. Problems arise if there are outliees,few measurements which are far from
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the center of the distribution. These outliers datort the mean. Another situation that
the mean value does not handle well is if the ithstion is split, i.e. if we have more than
one peak. This situation arises in our method wheranglep we want to measure turns
out to be around 180and we look at the distribution between —X8¢<18C. Since

+180 and —180 are equivalent, we will get a peak around eadh@two.

9.3.4.2 Median value

The median value often does not give an answec@asae as the mean value, but it is

much less sensitive to outliers and the split ggaklem

9.3.4.3 Standard deviation

The standard deviation gives a measure of the wodth distribution or the error of a
measurement. It is important to note, that it givee error for the individual
measurements and not the error on the mean or mékha error on the mean or median

is smaller than the error on the individual measwats.

9.3.4.4 Fitting a curve

If the underlying shape of the distribution is kmgvene can fit the appropriate curve to
the distribution of measurements and thereby eixtrecbest estimate of the value, width
etc. There are two main problems, one is that tieedying shape is often not known
and the other is that one can end up in a locainmim when doing the fit and thereby
getting a false result.

We found that fitting a Gaussian curve to our disiions gives us good results. Fits to

the distributions of\x, Ay, ande are shown in Figure 92.

9.3.4.5 Error of the estimated value

We have estimated the desired value by forming rttean, median, or fitting the
distribution and we have the width or standard afgamn of the distribution. In the ideal
case when the error on each individual measuremmgnirely statistical and Gaussian, as
opposed to e.g. a systematic offset, the mean tamditting would give the same result

and the error on each individual measurement istéedard deviation (same as thim
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a Gaussian fit). Then, the mean is a combinatidd ioidividual measurements with error

o, and the error on the mean is:

Equation 33 g =

-9
mean \/ﬁ

9.4. Accuracy of Velocities Measured by DATMO
The raw data supplied by a laser scanner are desafiom the sensor to objects. By

observing the changes of distances over time, ppssible to determine the velocity of
objects. The basic steps to measure velocities are:

1. Segment the raw data into objects

2. Track the objects over time

3. The velocity is the displacement of the objectdidd by the appropriate time

In the following sections we will discuss severdfedtent methods on how this can be
done. The methods differ mainly on the third pomtmely how the displacement is
being measured. These four will be mentioned:
A. Center of mass tracking: The displacement is tfferdnce in the location of the
center of mass.
B. Closest point tracking: The displacement is théed#hce in the location of the
closest point to the vehicle.
C. Point-to-point matching: The displacement is thetbeatch between the points
from one scan to the other.
D. Line-to-line matching: The displacement is the bmsiich between the line(s)
fitted to the points from one scan to the other.

9.4.1 General test procedure

To measure the accuracy of a velocity measurenmaineeds know the velocity of the
object by an independent, preferably more accunaéthod. In our case, one would have
the sensor observe an object while at the same wmeaecord the movement of the
object. This has some technical difficulties, esgbcthe synchronization of the sensor
and the data taking of the object. Also, it will dpgite time consuming if one wants to do

this with several different object.
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We chose a different method. The sensor was mouwried vehicle and we observed
stationary objects while at the same time we resmttie movement of the vehicle. Since
the sensor was moving, the objects had an appaetity. This velocity was measured
by the sensor and compared with the apparent ¥glotithe object calculated from the
movement of the vehicle. In other words, a moviegser observing stationary objects is

functionally equivalent of a stationary sensor obisg a moving object.

9.4.1.1 Velocity accuracy from location accuracy and update rate

The laser scanner has a distance accuracy of eén.(3tandard deviation) and an update
rate of 75 Hz (iresolution). If the change in location between seans divided by the
time between two scans is used as the velocity, ttie accuracy in velocity is +-20 cm/s.
If instead one uses scans separated by 1 secamdthth accuracy is +-0.3 cm/s, but now
the update rate is 1 Hz.

This error does not include the tracking error. €3ty are extended and the scans often
measure different parts of the object while tragkin In the worst cases this introduces
errors in the location of the object equal to tize ®f the object and accordingly an error
in the velocity equal to the size of the objectididd by the appropriate time (e.g. the

time it takes to drive past an object).

In the ideal case one tracks one fixed point oblgject (e.g. its center or one feature) and
facilitates an appropriate filter. A typical filterould include a motion model of the host

vehicle and the observed object.

9.4.1.2 Center-of-mass tracking of compact objects

In the following discussion we investigate the aecy of velocity determination by
using a center-of-mass tracker and compact objébts.sensor was mounted on Navlab
11. We choose a tree as the object to track ( €i§8).
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Figure 93 The left side shows the scans projectedtd a global reference frame. The chosen tree is in
the center. The right graph shows the scans in thenoving) vehicle frame. The "path" of the tree
determined by the vehicle state and by tracking arshown.

There are four basic steps to the center-of-masgitrg algorithm:

1.
2.
3.

Location X of the tree is given (user supplied for the first iteration).

All points p=(x;,y;) of the next scan within +- 3m ofp)are collected.

The new location ¥=(X,y) of the tree is the center of mass of thesatp, i.e. the

average of xand y.

. 4.back to 1.

Figure 93 shows in the right graph the scans hadgath” of the tree determined by the

vehicle state and by the tracking. The velocityirae t was determined as:

V = (Xo(t) = Xo(t-18)) / 1s

l.e. the average velocity of the last 1s with adaip rate of 35 Hz.
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Figure 94 Velocity in x and y direction and the sped determined by tracking and by vehicle state.

Figure 94 compares the velocities and the speé&sfrdmed by tracking and vehicle
state. The speed is the quadratic sum of the twarMes. The standard deviations of the
difference between the tracking and vehicle statenates are 0.051 m/s, 0.062 m/s, and
0.038 m/s for x-velocity, y-velocity, and speedp@adively. The error for the speed is
considerably less than the ones for the velocitreticating that the x — and y-velocities

are correlated.

These measurements were repeated for a situatierevthe vehicle makes a sharp turn
and another situation where the vehicle speed wassa 13 m/s. For the sharp turn

situation the errors were 0.082 m/s, 0.075 m/s, @a89 m/s and for the higher speed
situation 0.071 m/s, 0.167 m/s, and 0.065 m/s. §leesors are larger than the previous
ones and some of it can be attributed to a tinssge we had with the yaw measurement

of the vehicle and a misalignment of the laser sean

Nevertheless, following numbers describe a consge/astimate of the error in the
velocity of a relatively compact object:

Error in x velocity: 0.08 m/s

Error in y velocity: 0.17 m/s

Error in speed: 0.11 m/s
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9.4.1.3 Tracking and matching algorithms for extended objects

The data presented in this section was taken wéhside collision warning system
mounted on the transit bus of the Port AuthorityAdégheny County.

Each single scan from the laser scanner is segohertteobjects. An object is the sum of
points that are less than a threshold value apart €ach other. An example can be seen
in Figure 95:

Figure 95 On the left side is a single laser scaegmented into different objects. The images on the
right are from two video cameras and show the corrgponding objects. Notice that the segmentation
is not perfect, there are single points which areasignated as separate objects even though they
originate form the same car as a large object. Theed line inside the large objects indicate their

velocities.

Objects are tracked between scans and, in the dgahpwn in Figure 95, the velocity
of the objects is determined by point-to-point rhatg. (i.e. for each point in the current
scan, one finds the closest point in the previoten swhile not exceeding a certain
threshold). For this closest point one finds agheclosest point in the scan before, etc.
Finally, for each point in the current scan one aaain of points reaching in the past
and one can determine a velocity for each poine Vélocity of the object is then the

average of the point velocities.
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Figure 96 shows the calculated velocity of theigtairy car that is depicted in Figure 95.
Because the car is stationary, the velocity shd@dzero for all times. Any deviation
from zero is a direct measure of the error.
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Figure 96 Velocity measurement of a stationary capassed by a bus. The top two graphs show the
measured velocities parallel (vx) and perpendiculafvy) to the bus for three different methods. The
lower left graph is the speed of the bus and theweer right graph is the path of the bus together wit

the locations of the closest points and center ofasses.

The velocity determined by the point-to-point matghmethod is compared with two
other methods: tracking the point of the objecteki to the bus and tracking the center-
of-mass of the point cloud. The quality of the pdopoint matching method is
approximately the same for velocities parallel {pection) or perpendicular (y-direction)
to the bus. The closest-point or center-of-massaust are both much worse for the x-
velocity, but much better for the y-velocities. Th&andard deviations are shown in
following table:

Point matching Closest point Center-of-mass
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o(vx) [m/s]

0.43

1.70

1.17

o(vy) [m/s]

0.69

0.22

0.23

Table 30. Standard deviations of three matching mébds for a stationary car

We wanted to investigate, if these numbers chamgerudifferent circumstances. In the

above example, the car is parked parallel to the @®inot occluded, and the bus is

driving straight. In the next example, the busuising left, the car is occluded for some

times and the car is oriented at different angistive to the bus.
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Figure 97 The same as Figure 96 but now for a sittian where the bus is turning left.

The respective standard deviations are listedlioviing table:

Point matching

Closest point

Center-of-mass

o(vx) [m/s]

0.95

1.32

0.98

o(vy) [m/s]

1.04

0.51

0.58

Table 31. Standard deviations of three different mgching methods for bus turning left

Most of the values are worse (and sometimes maaa twice as bad) than in the

previous example. Only the determination of vx wiike closest-point or center-of-mass

method is better.
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9.4.1.4 Conclusion

The source of the error for the closest-point dreddenter-of-mass methods are obvious,
namely, the laser scanner sees different partseobbject and therefore the object seems
to be moving. The results from the point-to-poirdtahing, especially why it is so much
worse for vy than the other two methods, are mampicated. The point-to-point
method would work, either if the points would badamly distributed on the surface of
the object or if they would always be at the saowtion on the surface of the object.
But in our case the points move systematically le durface of the object and so we
have this movement in addition to the movementefdbject. An example can be seen
in Figure 98.

al

2851

29

285

ohject y [m]

i
275
27

0.5 1 15 z 25
abject x [m]

Figure 98 Three consecutive scans, blue, red, ancegn. The movement to the left is caused by the
moving object itself. The small movement down is esed by the points moving on the surface of the
object.

Neither of these three methods is good enoughuoiparposes, we therefore developed
another method, the line-to-line matching methdds hew method is described in detalil
in the section on the DATMO algorithm. In the negttion, we discuss the accuracy of

the resulting measurements.

9.4.2 Quantitative results of line-to-line matching

As before, we looked at the residual velocity &&fi objects to determine the accuracy of

the velocity measurements.

We chose two situations. The first one is the samthe one we analyzed in the previous

section, in which the bus drives straight whilegiag a parked car. The second one we
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chose because it gave larger measurement errarthar situations we observed. This
should show us what we could expect in a worse tijaical situation. We suspect that

this second situation gives worse results becdwesshape of the vehicle is more rounded
and therefore lines do not fit as well as they widol a rectangular shaped vehicle.

Figure 99 shows the first situation. The followitaple lists the errors of the line
matching algorithm compared to the point-to-poimttching, closest point, and the center
of mass tracking methods (everything in m/s):

line point closest center of
match match point mass
o(vx): 0.29 0.43 1.77 1.18
a(vy): 0.09 0.69 0.22 0.24
max(vx): 0.81 1.29 6.08 3.78
max(vy): 0.39 1.53 0.73 0.73

Table 32. Line matching algorithm errors vs other nethods

The velocity estimation is significantly better lithe line matching algorithm than with
any other method, no matter which criteria is ugstdndard deviation or maximum
deviation in x or y direction). The error in thedirection is expected to be less, because
the object is less extended in the y-direction. $tamdard deviation of the velocity from
the line matching algorithm is less than 0.3 m/d e maximum (absolute) deviation is
less than 1 m/s.
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Figure 99 Velocity measurement of a stationary capassed by a bus. The top two graphs show the
measured velocities parallel (vx) and perpendiculafvy) to the bus for four different methods. The
lower left graph is the speed of the bus and theweer right graph is the path of the bus together wit
the locations of the closest points and center ofasses

Figure 99 shows the comparison between line-@4ivatching, closest point, and center

of mass tracking methods for the second situation:
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Figure 100 Same as Figure 99 but for a situationlvich gives worse error.

This table summarizes the errors in Figure 10Q@Herdifferent methods:

line closest center
match point of mass
a(vx) 0.44 2.18 1.77
a(vy) 0.26 0.35 0.34
max(vx): 0.85 6.18 5.25
max(vy): 0.93 0.95 0.93

Table 33. Errors from the three different methods

The errors from the closest point and center ofsmescking methods are comparable
with the previous situation, but the errors frone fine matching in the y direction is

twice as bad.
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We analyzed a few more situations and always f@imdar results as reported above. In
one of those situations the maximum speed of tisenas a little bit over 10 m/s and the

accuracy was +-0.15 m/s.

9.4.2.1 Discussions about line-to-line matching

The line-to-line matching algorithm is clearly letthan any of the three other methods.
Its accuracy decreases if the observed objecttisvalh described by straight lines. Even
with this decreased accuracy, it is still bettantithe other methods. Another situation
which is difficult to analyze is when the obsendalect is oriented in such a way, that
the scanner can only see one line, i.e. when tHfacguof the object is perpendicular to
the beam of the scanner. But in that situationaggrithm will have problem because of

the lack of features (i.e. a corner).

9.4.2.2 Error characterization of the full DATMO

In order to get a better characterization of th@refunction of the full DATMO we

looked at a 40 second long data set. During thg tihe bus was driving at about 10 m/s
past a whole series of fixed objects: parked aas| boxes, and lamp posts. DATMO
detected 312 different objects. The DATMO Algoritheection describes how the
velocities of all the different objects are detered. The distribution of the measured

velocities shows the error function.
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Figure 101 Distribution of the error in velocity. The left shows it for the velocity in x direction ad
the right for the y-direction. The red lines are Gaissian fits to the distributions.
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Figure 101 shows the distributions for the x armdirgctions. Gaussian curves were fit to

the distributions (shown in red) and gave followpayameters:

x-velocity  center: -0.10 m/s: 0.20 m/s

y-velocity  center: -0.04 m/s: 0.13 m/s

The centers of both distributions are not exadtlgeso. The offset for the x-direction can
be explained by a 1% inaccuracy of the speed obtle The offset for the y-direction
could be due to a small misalignment of°@Rthe laser scanner. Both of these errors are
very small and well within the known accuracy ofthus speed and the sensor

alignment.

The distributions are fairly well described by tBaussian curve, except for their tails
which are much stronger. These outliers can coora fnconsistent scanner data, e.qg. if
the scanner sees different parts of an object es ot get any return from certain parts
of a vehicle. We later discovered that the budfitgas not level and therefore the sensor
plane was not parallel to the ground. This woulglax why we didn't always get
consistent returns,e. the scanner probed the objects at different heigbpending on

the distance of the objects.

Another source of errors is ground returns. Somegtithe laser scanner sees the ground
at a very shallow angle. Since the angle is sol@lalany movement of the scanner
results in a strong change in what the sensor seestherefore DATMO sees a fast
moving and/or fast accelerating object.

9.4.2.3 Conclusion

In one of the sample situations and for the extdrihga set, the relative velocity of the
car was more than 10 m/s. The car was moving tawand away from the scanner, and
it was moving almost parallel to the scanner beantsperpendicular to them. All this is

equivalent of saying:
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Relative velocity: vx =-10 ... +10 m/s

vy =-10 ... +10 m/s

Depending on the situation, the accuracy is betwéef.15 and +/- 0.45. The accuracy
is mainly dependent on how well straight lines barfitted to the object. In general, the
accuracy is described by a Gaussian distributidh avi= 0.2 m/s plus occasional outliers

of a few m/s.

The algorithm runs about 5 times faster than iga bn a standard PC.
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9.5. Quantitative Evaluation and Testing of FCWS
In order to validate the Transit Bus FCWS perforogaaxtensive tests were undertaken

in a known environment similar to urban and subanrteving conditions. The testing
was conducted for two main purposes: (a) to prelamiy evaluate the performance of
the FCWS algorithm including sensor detectionnestion and fusion for multiple target
tracking and threat assessment based on thoseinga@tgorithms developed at
California PATH; (b) to test the measurement artdredion error characteristics based
on vehicle on-board sensors in an known environmgné test data can be used for
system tuning and further development purpose®sfdf a FCWS was also conducted
by CAMP project as reported in [1]. However thetites conducted by CAMP was
Human Factors related to test a specific manewlréref last minute braking) and was
conducted using drivers from different age groupsisareported in [2] The CAMP
project was mainly for purposes of defining warnthgeshold criteria as opposed to a

test of the technical characteristics of the system

In any urban and suburban driving environment, abjer hazards in bus forward path
can be divided into two categories: moving objeatsd static objects. The test
environment described in this report was createrpgeely and thus known in the

following senses: Moving object — its velocity apdsition with respect to an inertial

coordinate system are synchronized and recorde€airtime together with those of the
bus — the subject vehicle; Static object — its gomsiis also recorded. If the subject
vehicle moves in a specified manner from a knowtiainposition, then its motion

history is known at any time. In this way, a knointer-relationship between the subject
vehicle and the environment (moving target vehieled static object) is created. Those
true values are thus used to compare with the gporeling detected/estimated values

based on remote sensors.

The test was restricted to vehicle moving alontraght road instead of on curved road.
However, similar tests can be conducted for anyerotenvironment in future

development, for example on a curved road, or wpidiaill sections. Our test site was at
Crows Landing, an abandoned NASA airfield, whicloides multiple straight lanes

(runways) without extra disturbances.
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This section will describe the test procedures dath collection methods as well as
provide some preliminary data analysis from thérigs

9.5.1 Test Objectives

(1) To test sensomeasurement error and time delay, mainly from LIDAR and
RADAR for target position and/or speed detectioa known environment;

(2) To test theestimation/prediction error and processing time delay in the
algorithm. The algorithm takes sensor measurenanisput and target position,
speed, and acceleration as output. Those two taarer the most critical factors
for threat assessment of warning issuance;

(3) Other on- vehicle sensomeasurement errors and time delays including
speedometer, yaw and yaw rate from the Gyro; (€lsionship between steering
angle and yaw rate is already known.) It is noteat,talthough the test is on a
straight road, minor yaw movement would greatlyeetffthe on-board sensor
detection accuracy.

(4) Reliability and robustness: Target missing rate in raw measurement and ik rea
time processing such as tracking. In general, theeetwo places in the system
which could lead to a target being missed: the @snthemselves do not detect
the target at all (This happens to both LIDAR anmdDRAR) and the algorithm
fails to recognize it correctly from the sensorpuis. The target might be missed
or its position might be miscalculated/estimate@ ¢ tracking, filtering and/or

fusion algorithms problems.

The advantage of using a known environment is ithean provide a known reference
which cannot be achieved based solely on curredtded data from the vehicle because
we do not know if those data provide true measurénamd if not, what are the
characteristics of the errors. It can be seentlitste tests are not just for evaluation, they
also provide a quantitative test of sensor charaties. The measurement error obtained

can be used for future ICWS algorithm developmemfovement.
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9.5.2 Considerations for Designing the Tests

(a) The bus starts at the same point for each run. frreubngitudinal position of the
bus at any time is known if the speed was calibratgh the help of fifth wheel
(true ground speed) and string pot (to be descrilagel; See appendix for
photos). To calibrate this, a car with string pohrection is run in front of the
bus as a moving target. The ground run-distancebeatalibrated using the fifth
wheel of the car. The fifth wheel has sensors tintas number of teeth in unit
time (converted to speed) and thus to estimatedhered ground true distance
under the assumption that there is no tire slips @ssumption is reasonable
partly because the road is dry asphalt and pamiyabse the fifth wheel is
passively dragged.

(b) The car in front of the bus has a string connecéilso to ensure that it starts at a
known fixed point. To avoid damage to the string, poother 6.38[m] of string is

used as an off-set extension.

(c) Obstacles should be put far enough away for the tBusccelerate to required
distance. In our test, the objects were over 40@jway.

(d) For each run, the relative positions — both latenatl longitudinal — of the
obstacles with respect to the bus lane are knowresorded.

9.5.3 Hardware and Software Setup

These include
* A Lincoln Town car was used as the target vehi€lee Lincoln Town car

was installed with an engineering computer runniagl-time QNX-4; A
SamTrans Bus was the subject vehicle, which wdalied with a engineering
computer PC-104 running QNX-4.
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Figure 102 Fifth wheel to measure true ground speeand string pot (Top of the bar)

A Fifth wheel (Figure 102) was mounted on the Lincto measure vehicle
ground distance free of any tire slip

An AMETEK Rayelco Position Transducer (range betwée— 50ft), or
String Pot (Figure 103), was used for measuring inter-vehdiktance. A
String pot was installed on the rear end of thecain, (then hooked to the
Bus) including software. The data recorded fromstngg pot was converted
to relative distance between the bus and the LimcSpeed and distance
measurements on the Lincoln were calibrated befm¢est

On the Lincoln a Gyro was used to monitor the Htenovement of the
target;

Data recording: For synchronization, the informatjpassed over from the
Lincoln were saved with the other data in the n@mputer of the subject
vehicle.

Carton boxes covered with RADAR/LIDAR reflecting taaals to enhance
signal reception were used as static objects.

Wireless communication system: A FreeWave card mstgalled on both the

Samtrans Bus and the Lincoln running under QNX-dl-tiene operating
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system; The information passed from the Lincolth® bus/ or from the bus

to the Lincoln was:

(0]

O O O O O O o

o

time stamp

fifth wheel speed

vehicle acceleration

yaw rate from gyro scope

string pot voltage (can be converted as inter-Vetdistance)
Latitude (GPS)

Longitude (GPS)

UTC time (GPS)

Altitude (GPS)

* 4 voice radios were used for coordinating operabietween drivers, people

responsible target disposition, recording, grouositipn measurement

-

Figure 103 Using string port to detect true inter-ehicle distance on-the-fly

9.5.4 Known Driving Environment

The known driving environment can be designed ¢tuthe static objects Figure 104 and

Figure 105 ) andmoving objects (Figure 106 ). For static objects there is no regoass
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anything. It is only used to test the sensors nreasent error and warning. These objects
may be designed to include road side parked vehiail boxes, traffic signs etc.. To
present different objects, boxes with differenesimay be chosen. To make the objects
RADAR/LIDAR sensitive, the boxes were wrapped vathreflecting cover.

Figure 104 View of the Static Objects from the Bus

A Moving object may include vehicles driving in different direct®) in adjacent lanes
and front vehicle. The target vehicle and the stthjehicles are connected with a
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Figure 106 Moving (front vehicle) and static object

measurement string which can measure inter-veldid&ance in real-time. Wireless
communication can be used to synchronize the mermnts on those two vehicles. This
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set up is to test real-time inter-vehicle distane@asurement, estimation, prediction and

filtering;

Host vehicles always start from a known positioas®&l on the ground position of the
targets and the running distance of the bus attmmg instant, we know the relative
position between the bus and the targets, whiehastical point. All the measurements

are with respect to a ground coordinate systenefsat! in Figure 107 .

9.5.5 Preliminary Test
A pre-test for the following items was conducte®amTrans before the formal test:

(a) Re-calibrate the SamTrans bus and ensure thathalloh-board sensors and
computers working properly;

(b) Verify that the sensors and wireless communicatsystems were properly
installed, calibrated and working on the Lincoln;

(c) To use laptop computer connected with the subjasttb use “run” instead of
“auto-run” for manual data-saving interrupt for efahg the saved data with the

test maneuver,
(d) To make sure all the data saving are correct osubgect bus;
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Ground Coordinate System for Physical Test at Crows Landing

(X,Y)-coordinate of static object

Bus moving direction

- @ .
Static
Object
0 Y
- q Lane center
Bus .
Lane marker k
7777777777777777777777777777777777777777 Lane center ,,,,,,,,,A,,,,,”,,,,,,,‘_;‘, Smmes
r
X

(X,Y)- coordinate of parked car

Figure 107 A Ground Coordinate System

9.5.6 Crows Landing Test

9.5.6.1 Relative speed and inter-vehicle distance error and time delay test without
string but with wireless communication

This test can be used to figure out the relativeedperror and measurement time delay
with low relative movement. Without string, such vement can be made much larger

and faster;

Maneuver 1. Vehicle following. (Figure 108) Use a leading v&hiin the front of the
bus with FCWS to run at different constant spediiiph], 10[mph], 27[mph], 40[mph],
55[mph] for some time. The bus driver was askeddtermine a safe and comfortable

inter-vehicle distance.

Leader vehicle approximate deceleration: m2[s®], 0.8[m/ s’], 1.5[m/ s’]
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Inter-vehicle distance: speed/relative-speed deg@non the vehicle speed and driver’s

choice — feel comfortable;

Front Moving Target Detection: longitudinal measurement and estimation comparison

Wireless commuunication can
help two vehicles to synchronize
for data recording so that relative
speed and time delay can be
calculated.

“arton
Box

“artor

Bus

‘arton
Box

Lane marker

Each vehicle is to record sensor|
data like wheel speed which
can be converted to ground
speed after calibration.

o

Figure 108 No string for vehicle following

9.5.6.2 Inter-vehicle distance error measurement (with string) and time delay
test with variable speed and deceleration

Maneuver 2: Vehicle following (Figure 109): Use a leading v@hiin the front of the
bus with FCWS to run at different constant spe&ftaph], 10[mph], 15[mph], 20[mph],

25[mph] for some time then the lead vehicle deagdsr at approximately: 0.8]/ S*],
0.5[m/s?], 0.8[m/ s?]

Inter-vehicle distance: speed/relative-speed degr@ndBecause the total length of the
string is 16 [m], an offset 6.38 [m] of the strimg used to avoid break due to over-

stretching.

9-245



Front Moving Target Detection: longitudinal measurement and estimation comparison

Wireless communication can Wire and string, connecting
help two vehicles to synchronize two vehicles so that we know at
for data recording so that relative any time instant the real
speed and time delay can be Inter-vehicle distance
calculated.
“arton
Box

“artor

Bus

‘artol
Box

Lane marker
Each vehicle is to record sensor|
data like wheel speed which
can be converted to ground
speed atter calibration.

N

Figure 109 String Pot and wireless communicationra used

9.5.6.3 Static object lateral distance measurement, prediction/estimation error test

Maneuver 3: Carton boxes covered with RADAR reflectors ataierheights are put in
known places with respect to the center of the rdagure 104). The Lincoln (Figure
102) is parked on the left or right side at certiistances with respect to the centre of the
road: 1.4[m], 2.0[m], 3.0[m] measured to edge & thncoln; Drive the Bus straight
ahead at different speeds: 5[mph], 15[mph], 27[mBBlmph]. The bus needs to run in
the center of the lane or at the edge of the I@he;Lincoln driver opened the left door
sometimes (Figure 111); Multiple cars and boxesl @seobjects to make sure there is no

overlap. Heavy objects are put inside the boxakepwould stay in place.
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Side Static Target Detection: lateral measurement and estimation comparison

[Carton )
Box Carton”
Box

Bus moving direction

N

Lane center

Lane marker

Targets at known

-~ Lateral positions

fffff Bus

[Carton e ;
______________________________________________________________________________________ T R
Lane center T

Figure 110 Parked car testing scenario
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Side Static Target Detection: lateral measurement and estimation comparison

Targets at known
~| Lateral positions

. . ' Carton|—" .
Bus moving direction “ar .
i £ paty Box ‘arton
_— .| Box Box
- Lane center
. Bus  m

Lane marker

Lane center

Parked car at known lateral position
with door open

Figure 111 Park car door open test scenario

Maneuver 4. Two cars are running in left/right adjacent larmg a known lateral
distance in the same and opposite direction atrmdifit constant speeds: 10[mph],
30[mph]. The bus can run at slightly different sfeéon-constant) so that there is some
relative movement when the vehicles run in the sdimeetion (Figure 112)
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Side Moving Target Detection: lateral measurement and estimation comparison

. — “ar ) Carton
Bus moving direction arton - SR
Box Box
-,
B S : Lane center

Lane marker

This car can drive in two directions at known |-
Lateral positions and known relative speed if
Wireless communication is available.

Figure 112 Side Moving Target Direction

9.5.6.4 Cut-in test

Maneuver 5: The Lincoln travels in the left/right adjacent ésnbut at a known lateral
distance in the same direction at different spe€ti@mph], 20[mph], 35[mph]) for a
while and then accelerates to take over the buscamdh (Figure 113). The speed

variation of Lincoln is intentionally made. The bdsver is to decide an appropriate

inter-vehicle distance.

9.5.6.5 Gyro rate and RADAR/LIDAR dynamic angle measurement test

Maneuver 6: Drive the bus straight at certain speed: 5, 15hmPnce the bus arrives at
a certain point, drive around and then return m $hme lane in the previous direction

and pass the objects again. In each run the ohjelttse viewed twice by the RADAR

Sensors.
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Cut-in maneuver: lane change to cut-in and cut-out

Targets at known
~| Lateral positions

Carton ™ .
Box ICarton
Box

Lane marker

Bus moving direction

T y
. - p
. T o
Lane center _._»——-‘

This car can change lane to cut-in and cut-out.

Figure 113 Cut-in and cut-out to test lateral moverant detection

9.5.6.6 Low speed approaching/crashing to a static object
Maneuver 7: Carton box (covered with foam block) with RADARflegtors at certain

height are put in different places of the road dnge the Bus towards the object at
different speed: 25[mph], 15[mph], 10[mph], 5[mpb]see the reaction of the warning
system and driver’s response (Fig. 114);
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Crash Test at Different Speed to Evaluate Driver’s Reaction and Time Delays

Targets at known
| Lateral positions

Bus moving direction o Carton|.
[ Box
B . Lane center Cfal'toﬁ
us e S = 11 S
. “artor
Box

Lane marker e
Lane center o ﬁ

Parked car at known lateral positior
with door open

LN

Figure 114 Crash Test; No string is used

9.5.7 Data Analysis
As mentioned previously, the test data can be dsedwo objectives: (a) To check

LIDAR/RADAR measurement, estimation and target Knag; (b) To tune those
parameters. The data collected through these empets have shown that both of these
objectives can be achieved. The following presexamples of measurement and
estimation using LIDAR and RADAR compared with thdependent measurement from
the fifth wheel and the string pot measurements.

1. The following plots correspond telaneuver 2(Figure 109) for target longitudinal

measurement.

In Figure 115, Figure 116 & Figure 117, both targehicle and SV speeds are
around 10[mph]. String pot is used to test LIDARIBRAR longitudinal measurement
and estimation including distance and speed. Titie iiheel speed and string length
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are considered truth measurements after calibratidowever, lateral position

measurement is also plotted.

Lateral Position of Static Objects v.s. Lidar Estimation w. r. . Bus Central Line

e T T T T T
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A I """ """" """" """ """ """ """" """ """ }

0 10 20 30 40 50 B0 70 80 a0 100
Radar: Lateral-distance (blue) [m]

Figure 115 LIDAR/RADAR target lateral position measurement and estimation [m]

It can be seen from this figure that lateral measrLIDAR is slightly more consistent
compared to RADAR.
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Figure 117 LIDAR/RADAR target speed estimation vsfifth wheel [m/s]
The above two figure shows that RADAR distance angpeed measurement in longitudinal direction

wfifth

could achieve better results.
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9.5.8 Future work

PATH plans to utilize the data collected through Werification tests to develop sensor
fusion approaches and improve the tracking and iwgralgorithms in order to achieve

better measurement/estimation and system performnanc
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10 TRANSIT CWS SIMULATOR

As professional bus operators experience potecwidision situations very rarely, it can
be difficult to gather enough data to evaluate stesys performance. It is however,
possible through the use of a bus simulator togmtetarge numbers of drivers with
potential collision situations in a much shorterige of time than drivers would
normally encounter in daily driving. Such potentallision scenarios can be recreations
of actual accidents or a composite of hazardousifscAnother advantage of a simulator
is that it is possible to have a pool of drivelseaperience identical situations to see how
drivers’ behaviors to the same incident differsstlyg a simulator allows drivers to be put

in potentially hazardous situations without ank tis life.

We are planning to use the FAAC simulator at SamJta conduct further study into
the collision warning system. It will be possibteresearch areas such as:
» brake reaction times — such information could bedus refine collision warning
sensitivity parameters
* warning sounds — to determine whether drivers risetér to visual or audio cues
of hazards and to determine optimum warning sounds
* to investigate the effects of false and nuisanceiwgs on operators trust in the
system
* to determine if drivers’ visual scanning patterihamge with the addition of the
system

» to optimize display techniques

10.1. The SamTrans simulator
The SamTrans Simulator is a FAACsimulator and is made up of the following

components:
* A simulated Gillig bus driver’s workstation, whighcludes all the normal controls,

and seat as the Gillig buses that are in operdtisgaby SamTrans
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* Five 70 inch rear-projection visual displays to\pde the driver with the “out the
window” forward and side view.

* Two 42 inch plasma video displays to provide raaws, these are seen by the driver
through use of the mirrors

* An overall 315 degree field-of-view

* An Instructor/operator station that is used to warthe overall set-up

* An auxiliary driving station

The set-up of the simulator can be seen in thedgbelow:

Figure 118 Simulator set-up from the back
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Figure 119 Trainer/Experimenter workstation

Figure 120 Driver Seat with forward view
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Figure 121 Simulated view of the interior of the bis

Using the existing FAAC simulator of SamTrans busesearchers at PATH have begun
the initial development of a system to integrdte tollision warning system into the
simulator and to provide a method to collect dribahavior data (such as throttle
position, steering wheel angle etc.) that couldbalyzed to determine the consequences
of implementing different warning systems. A brieftline of the method is presented in

the next section.

10.2. PATH CWS/FAAC Simulator Integration
Currently, the PATH CWS operates only on physiocates using actual sensors

(LIDAR/RADAR). It is desired to integrate the CWSithv the simulator in order to

quickly evaluate collision warning performance. eTIRAAC simulator computer at the
SamTrans site broadcasts over a closed Etherngorkethe state (i.e. position, velocity,
heading, etc.) of the bus and other vehicles degiat the virtual reality scenario (see
Figure 122).
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Figure 122 PATH simulator software architecture

Data is transmitted at 30 Hz and is read by a cdempsystem running the CWS
algorithm. Since this algorithm requires inputsniractual LIDAR/RADARS, a program
has been developed that models the LIDAR/RADAR d&igs using virtual beams
projected into the scene. If a frontal target iedied, this information is sent to the CWS
algorithm for determination of the threat level.eThIDAR/RADAR model process
provides inputs to the CWS algorithm in the samrenfas the actual sensors mounted on
the buses. This alleviates the need to modify tWSGilgorithm used on the actual buses
and allows a transparent code interchange betweersimulator and buses. If it is
determined that a warning should be issued, the @v€ess writes the threat level to a
digital I/O driver that controls two DVI display®sicribed below.

Inside the booth where the driver views the virs@ene, two visual devices or “light
bars” for collision warning will be used, one of mfhis shown in Figure 123.
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Figure 123 DVI light bar.

One light bar is mounted on the left-hand “A” piland a second mounted on a center
windshield mock-up pillar or strut. Both are wirdnlectly to and controlled by the CWS

computer. Each has a number of vertically stackethngular light segments on top and
a two triangular shaped lights on the bottom. Téwtangular light segments correspond
to frontal and frontal corner hazards, while thargular lights refer to side hazards. For

this study, only frontal hazards will be considered

The light bars illuminates amber to indicate asle®vere threat while red and
ultimately, flashing red indicate a more severdneminent threat. Based on the CWS
algorithm, as a hazardous situation becomes mongrient, more light segments will
illuminate, starting at the top and working downeai hus, collision imminence (i.e.
threat of a collision) is reflected in both the rhen of lights illuminated as well as the

color of the lights.
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10.3. Summary
Under this project, the SamTrans/FAKCsimulator is being modified to incorporate

CWS functions, which will allow us to create spaxgcenarios of interest to which large
numbers of drivers can be exposed to, providingitls a much more extensive data set
than we could obtain from in-service operationwb touses. The project team plans to
conduct experiments using the simulator at ther latage of this project. From the
simulator experiments, more extensive data setsbeilobtained which will be used to
analyze driver behavior change due to the intradocof ICWS and for further

optimization of the warning algorithms and DVI.
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11 RECOMMENDATIONS

The research and development of the ICWS has maphéficant progress toward
deployment. However, due to the research natugyeifsiant work is still needed in order
to achieve a fully commercializable integrated isamh warning system. The following

outlines further development needed before commlézation can take place.

11.1. Develop ICWS Markets and Industrial Partnerships
Like any product, commercialization of ICWS reqsiteoth sizable market demand and

willing suppliers. The crash data analysis undergarly FCWS and SCWS studies have
shown that transit collision warning system canage transit safety. A recent cost
benefit analysis conducted by Volpe indicated thath safety systems can help the
transit operators to reduce operation cost. Fqreaific transit operator, the extent of the
cost saving will depend on level of deployment, ahhitransit operators say, is very
much decided by the unit cost after the technokgieet their performance and technical
requirements. The unit cost in turn will dependtlo@ market size. The study conducted
by the ICWS team indicated that ICWS can potentiaéinefit and be of interest of other
commercial fleet operators such as UPS, which ¢@enasimilar environments. Under
the current project, the ICWS team begins to reatho transit and other fleet operators.
The team recommends that this effort be continyoteslried out until an initial market is
established. In parallel to the market developmiens, essential to work with industrial

partners to commercialize the ICWS, starting froma phase of field operational tests.

11.2. Conduct Field Operational Tests
Under Phase One of FCWS and SCWS development, teveaue service buses were

instrumented with frontal collision warning systearsd a test vehicle was instrumented
with a side collision warning system. These dewalepts have led to the current ICWS
efforts in instrumentation of two integrated cadis warning systems onto a SamTrans
bus and a PAT bus. Field testing is currently uwdgr Although the research team has
carefully planned the field tests in order to collldata from multiple drivers on selected

routes, the exposure to diverse driving behavtordjfferent driving environments and to
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hazardous conditions is very limited. It is the semsus of the research team and
interested transit agencies that a larger scalel Edperational Test (FOT) needs to be
performed in order to collect adequate data foifyiag the effectiveness of the ICWS
and for fine tuning the design parameters or makimgrovements. The ICWS research
team recommends that one or two fleets of 50-108mee transit vehicles be equipped
with a prototype transit ICWS on a variety of raut@nd operating conditions for a

duration that can justify industry-wide acceptance.

11.3. Human Factor Studies Using Samtrans Driving
Simulator

The field tests conducted under the current prqyeavided useful results for evaluation
of the effectiveness of the CWS system from Humantdfs perspective. Because of
small number of buses involved in the field testdww this phase of the project, it is
difficult to conduct analysis of driver behaviorattges for specific hazard scenarios. We
therefore propose to conduct human factors studies) the Samtrans driving simulator
to conduct further study of the integrated (forwardl side) collision warning system.

The following studies have been identified as regepriorities.

* To investigate if an integrated (forward + side)lismn warning system (CWS)
affects distracted and non-distracted Transit Byer@tors response in imminent

collision warning situations.

* To investigate if operatorsisual scanning patterns change with the additibthe

system. It would be useful to know if operatorsedeiall warnings and whether the
system causes the operator to become distractsmnifar issue was raised by Lee et
al (2002) who, for a car collision warning studyetermined that future research
should investigate what happens if an operatolréady braking when they receive a
warning — do they continue to brake at for exantipbesame rate?

* To further investigate what types of warnings byserators view as nuisance
warnings. Whilst some of the types of nuisance wgs) have been identified in

human factors ride-along, much variation has bessm $oth between and within
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operators’ responses to each encountered scebigeoof the simulator would enable
different operators to be exposed to the same Hoergpeated times which would
help to further clarify what aspects about a sdendeed into an operators’
consideration of whether the warning is a nuisamaming. This type of study could
also be used to determine the effect of false amghnce warnings on operators’ trust
in the system.

* To determine optimal display techniques. This caatdude different visual display
methods as well as audio warning sounds — to determvhether operators react
faster to visual or audio cues of hazards and teraene optimal warning sounds.
Also of interest is where a visual display couldpbieced in a bus that does not have a
center pillar. One solution, for this type of busuld be to place the display on the
right pillar.

 To further determine optimal integration strategies the integrated collision
warning system. In the present system there igiooifzing of warnings. It would be
valuable to know what the human factors implicadiamould be of the following
scenarios: giving the forward system priority dt tahes, giving the side system
priority at all time, giving the most critical hadapriority or having no priority

(current system).

11.4. Finalize Performance Specifications
Learning from field operational tests and simulatetudies, the performance

specifications developed under the current ICW®aeh program should be updated
and finalized in order to meet the transit and ofiteet operators’ needs. The ICWS
Performance Specifications should have separat®sgdor the following:

1. Specifications related to frontal sensors and perémce only

2. Specifications related to side sensors and perfocsanly

3. Common specifications for frontal and side senaoisperformance

This would allow transit agencies to purchase mbegrated systems at a lower price if
they have a lot of side collisions or frontal cgithns only.
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11.5. Hardware and Software integration of ICWS
The philosophy of building the first advanced ptgp® was to achieve functional

integration and, at the same time, minimize th& o system integration by having
separate duplicate systems and data interfacest@ndclude comprehensive data
collection capabilities. The duplicate systems woplevent one system from taking
down the other system should a failure occur.db ahinimized risk by making sure that
each partner had available what they needed toogeplsystem. The sensory data,
additional engineering data and video streams aelieare for thorough data analysis. In
order to perform the FOT, a higher level of hardwand software integration needs to
occur in order to achieve the level approachingraroercial prototype.

11.5.1 Eliminate Duplication of Hardware
The experience gained with each other’s systemnoawn be taken to the next step of

integrating the testing prototype by eliminatingplicate hardware and combining
algorithms. Duplications that could be eliminatee: a
1. Creep Sensor Interface
Gyros
Separate electronic enclosures
Dinex Interface
Power supplies and power conditioning

Power up and Power down logic

N o g s~ w D

GPS (May also be redundant with electronics for tbasking and annunciation

systems)

8. Cell phone interface (could be eliminated compigtel

9. Reduce the number of processors (see next section)

10.Eliminate most of the video cameras and one dajiticee eliminate video
section)

11.Combine the data recording functions into one caempthassis (see next section)

12.1f transit bus has stability control system, theus lstate information may be

available without additional gyros or creep sensor

13. Future drive by wire systems may include steerihgeV encoders
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Eliminating these duplications would increase therall reliability of the system due to

less electronics. It would decrease the overall gbthe system for the same reason.

11.5.2 Combine / Eliminate Processors
The current ICWS contains five CPU’s to handlettipelevel processing tasks. This does

not include the processors that are embedded imatlye sensors. The CPU'’s in the
advanced ICWS prototype include:
1. FCWS Engineering computer
Left SCWS Engineering computer
Right SCWS Engineering computer
FCWS Video and Data recording computer

a kb 0N

SCWS Video and Data recording computer

A minimal commercial prototype could eliminate baththe Video and Data recording

computers since they are not necessary to gengeaatengs to the transit operator and as
a minimum combine the left and right SCWS Enginegcomputers. The current barrier
to combining the FCWS and SCWS Engineering compuierthat each system runs
different warning algorithms and data processing timcreasing the CPU loading above
what one processor could currently handle (seedutsearch for more information).

1153 Eliminate Video
The elimination of collecting video information nanly minimizes the CPU and

digitizing hardware on a commercial system, it wibalso eliminate seven of the nine
cameras installed as part of the advanced ICWStyp#. The two remaining cameras
are used for the curb detection at the front ofoihe (laser line striper) and curb detection
ahead of the bus (fusion of video with other ses)sor

As part of the advanced ICWS prototype, the camanasvideo / data recording were

necessary to allow the continuing development @b@thms and analysis of system data.

One of the questions that would need to be answeradhether the additional data

recording could be used as a feature of the system,to limit transit liability in
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collisions and helping to defend transit operatgainst fraudulent claims and recording
vandalism. It could also be used for training pggs This might be a feature for which
some transit companies would pay the additional. doshould certainly be part of an

optional configuration, but may not be part of Hase package.

1154 Commercialize Laser Scanners
The most expensive components of the prototype IGf$em are the LIDARs (laser

scanners). In the ICWS prototype the sensors aooeunt for over $ 15,000. That does
not include the additional cost to mount them itragtable assemblies. To make the
ICWS more economically feasible, LIDAR sensors $tidae designed for this specific

application. Also, weaknesses of the current seensignificantly increase the system

false alarm rate.

The main issues associated with this design are:
Overlapping fields of view.

Size

Reliable detection

Resolution

Range

Update rate

Expense

Synchronization of scanners

© © N o g s~ wDdhPE

Eye safety

Overlapping fields of view: The current system uses three LIDARs. TherelilED&AR
mounted on the left side of the bus, the fronthef bus and the right side of the bus. The
side LIDARs have 180 degree FOV'’s. The front LIDA&S a narrow FOV and is used to
see far ahead in the lane. The LIDAR could be rigded to mount on the left and right
side of the front bumper with 270 degree FOV’s.sToould eliminate one LIDAR and
provide better coverage than the current systefromt of the vehicle. Even if the front
look ahead LIDAR could not be combined with theesldDAR, it could be replaced

with a much less expensive adaptive cruise contndlsince the object tracking could be
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done with the other LIDARs. However, this roughlyuttles the worst-case distance to
cover the entire side of the bus. To get the saselution we have now at the back of
the bus, we would need twice the angular resolutibseems plausible that coverage of
the back half of the bus is not as important athexfront, but this would have to be

looked at in more depth.

Size: The LIDARs used on the side of the transit bus arer six inches deep. Most
transit buses are at the maximum width for roadussyalready. Although exceptions are
made for safety devices, such as mirrors, the iaddif another foot of clearance needed
makes the vehicle harder to operate in the urbarra@mment and potentially more
dangerous to pedestrians and other fixed objectsreore prone to be damaged. For this
project, these LIDARs were mounted in retractabéxtendable assemblies. This adds
cost, complexity, cpu loading and additional maiatece issues to the system. These
were operated using the vehicle’s air system. Thesemblies were computer controlled
in order to implement a reflexive behavior for gaiéservation, present a lower profile in
tight situations and retract if it looks like it wgoing to hit something in its path. Using a
fixed mounted front bumper system not only reduties cpu loading but also the

interfaces necessary to extend and retract the R®A

Reliable detection: Reliable object detection is crucial for propestsyn operation.
There are two types of detection failures we habseoved fairly frequently that
significantly degrade system performance: missatgrns and ground returns.

With the SICK sensors, missing returns which octwath due to weak returns from low
reflectivity objects and due to too-strong retufran nearby high-reflectivity objects.
We don't understand exactly why the LIDAR failsdetect, and can only speculate on
possible fixes. It would help for the sensor &vén a larger dynamic range and use a

different wavelength.
Ground returns occur when the scanner sees thadyreither because the ground is not

flat (a hill) or the bus tilts to the side (goingband a turn.) In the current system, ground

returns are interpreted as potential collisiongl are one of the largest causes of false
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alarms. If the scanner had multiple beams spngaaliit vertically, or in some other way
could measure multiple points vertically on the esambject, this would greatly reduce
false alarms from ground returns, because it wdagdeasy to determine whether the
object is more or less flat on the ground, or stick significantly.  Multiple beams

would also give us more chances to detect any gogect, so would reduce missing

returns as well.

Resolution: For the current side LIDARS one can set the amgekolution to 0.25 0.5,

or 1°. The smaller resolutions have the tradeoff of ceduupdate rate and interlacing.
The 0.25 resolution has half the FOV. We are using the &ili»ARs set to 1 degree
azimuth resolution and 1cm range resolution. péstion uncertainty is dominated by
the azimuth resolution at ranges typically seethe collision warning system. This
means that in some sense the sensor is unbalasrcedrfpurposes. The range resolution
could be reduced without compromising performanae,alternatively the azimuth

resolution could be increased to exploit the ramgelution.

A characteristic of the SICK, and of many othergiole similar designs, is that the range
accuracy is roughly independent of range, wheréas position uncertainty due to
azimuth resolution increases linearly with range. any such scanner, there is one range
at which the position error from range and azimstiequal, where the scanner can be
considered balanced. For the SICK with 1 degeselution, this is approximately 2
meters (using a range accuracy of +/- 2cm to aftowoise.) To be balanced at 8 meters
(a more typical range in the collision avoidancetsy), we would need to either
increase the angular resolution to 0.25 degreesduarce the range accuracy to +/- 8cm.

If the range accuracy was specified as percenthtfee sange, then the range error scales
proportionately with the azimuth resolution unceryy so the measurement accuracy
would be balanced at all ranges. The balanced Rfh8e accuracy as a percent of
range is then about 2&n(angular resolution),or 0.4% for one degree angular

resolution.
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The azimuth resolution can be increased to 0.5e#sgby using an interlaced mode
where two consecutive scans are combined (redubegipdate rate to 37 Hz.) We
don't use the 0.5 degree interlace mode becauseates strong artifacts on moving
objects, and also because the total amount of idatat actually increased (due to the
drop in update rate.) With algorithmic improvertsem the tracker, it should be able to

tolerate the interlace artifacts, and then therald/be some benefit to using interlace.

Range: The current side LIDARSs are specified to be adeuta 50 meters and can see as
far as 80 meters. As with range accuracy, maximange should also be balanced with
azimuth resolution. As range becomes large, thet® become so far apart that any
return becomes largely useless. We require at teeee points on an object to create a
track. Because of this, with 1 degree azimutholug®n, small objects such as

pedestrians cannot be tracked above about 20 metéfsr side collision warning, a

reliable LIDAR range of 15 meters would be adequateee however, the discussion of

detection reliability.

Though we have seen detection fail at ranges of arfew meters, we do not suppose
that the SICK is failing to meet it spec. The peob is that real-world objects may have
reflectivity that differs significantly from the atdard target used in the performance
spec. A lower maximum range would not harm syspenformance as long as it did not
further degrade detection reliability.  The maionclusion here should be that the
scanner range specification is not a valid indaaf the actual detection range in the
real world, and that although the SICK specificatiooks in excess of requirements, the

observed scanner performance is one of the maitslon system performance.

Update rate: The current side LIDARs output 75 scans a secoriddegree resolution.

The scan update rate should be balanced againstnonaxspeed and size of objects
which we want to track. If an object moves tooldatween two scans, then it is difficult
to create a track from consecutive measuremenigh té current tracker configuration,

we could tolerate an update rate as low as 25 geansecond and still track objects
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moving at 20 meters/sec. At 10 scans/sec, the spmed would be reduced to 8

meters/sec. A lower update rate could help witt ceduction.

Expense: The current price of these LIDARs makes an advriCAVS prohibitively
expensive for commercial applications. Designingoanmercially deployable sensor
would require a certain amount of non recurringemge; the recurring expense could be

reduced significantly.

Synchronization of scanners: Currently the data from each scanner is analyzed
separately all the way up to the level of warningngration. If the scanners are
appropriately synchronized, the raw data can bedus achieve a virtual 360 degree
scanner. This then allows a single algorithm to jgot@ front and side object detections

and velocities, with no discontinuities at the lisrnbetween two scanners.

Eye Safety: Some trade offs will have to be performed to enshiat the laser scanner
will be eye safe. This is less of a potential peoblwith the current configuration of
SICK laser scanners due to the rotating mirror. Elav, it needs to be part of the design

specifications.

Essentially we are looking for a system with:
1. A lower profile so it won't stick too far out ofdlside of the bus (Coke can size
with remote electronics may be one way to go)
About 270 degrees FOV
Weather resistant, since it would have to operathe rain and snow
Update rate of at least 10 scans/sec, 25 scarnsisiecred.

Non-interlaced azimuth resolution of 1.0 degrebater.

S o

Reliable detection of real-world objects (not stmuldtargets) to a range of about
15 meters.
7. RMS range error of 0.4% of measured range or 4ch¢hever is greater (for

balanced performance with 1 degree azimuth resoi)ti
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8. Although not required, system false alarms couldsigeificantly reduced if the
scanner had two or more scan beams spreading gethapegrees above and
below the horizontal scan plane.

9. Be Eye-safe

All of these specifications have to be analyzetbakeir effect on the warning algorithm
performance and system cost. This is more of aimeagng effort at this point and not

research.

11.55 Integrate a Rear Collision Warning System
A Rear Collision Warning System could be integratgthin the same framework as the

FCWS and SCWS systems. For a minimal approachy#ineing to drivers approaching
the rear of the bus at an unsafe speed would goireetransit operator involvement at
all. A maximal approach would place two additio23l0 degree LIDARs on the rear
corners of the transit bus. The total of these amaol the front two would provide
redundancy and total surround sensing of the tréansi This would make the algorithms
more robust, especially for the side object tragkim would also allow objects moving
from the rear of the bus to the sides to be piakednore quickly and identified sooner.
Some work would need to be done to see if the Ddlild be modified to include rear
objects. Although buses usually do not back up evhil revenue service, it does
sometime happen, so it makes sense to supply asimum a light to indicate an object
is behind the bus.

11.5.6 Training
Buses equipped with the ICWS such as the advanwdtypes could be used not only

for CWS functions, but could be used to providentrey of transit operators. Through the
use of feedback from the cameras and bus statemafmn, instructors could provide
feedback of how operators performed on trainingreesi or on the road. As a training

device, transit agencies may opt for more functipnand a higher price tag.
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11.6. Areas for Future Research

Although the current phase CWS project has magtefsiant progress for an ICWS that
can effectively provide drivers with warnings andres under hazardous situations, some
technical issues still remain and deserve additiseaearch. The project team has

identified the following research areas:

11.6.1 Transit bus data

A considerable amount of data will have been ctdlédy the end of the ICWS project.
In fact, the volume will be so great that many iegting secondary analyses will not be
feasible to conduct due to time and resource ltoita in the ICWS project. In this
section we will identify a few potentially intere@sj analyses that could be explored at a

later date. This is not an exhaustive list — @ngy a small sampling of opportunities.

11.6.1.1 Inputs for operator training
Given the highly instrumented nature of the bus feasible to identify opportunities for

new or modified operator training. For example, ioyed documentation of specified
scenarios could be used to guide mirror use trginAnother example would explore
whether it is possible to induce safer pedestrigmalior as a result of door opening or

bus stop approach actions.

11.6.1.2Inputs for public education
During the course of safety analyses it may becobwous that certain behaviors by the

driving public are extremely indicative of potehtigarm, such as cutting in front of a bus
and braking. Isolating and breaking down such astican identify and verify practices
that may be in need of public education.

11.6.1.3 Inputs for roadway infrastructure
Using the data set we will be able to identify amdify roadway fixture geometries that

produce difficult bus operations (e.g., road geoyngarbage cans placed too close to
curb, parking spots too close to corners, etc).s€hman be used to assist infrastructure
specifications and parking enforcement activitiesg.( ticket and tow cars illegally

parked near corners).
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11.6.1.4 Verification of risky behavior predictors in the driving public
As a result of the sensor data we will be able laracterize how the driving public

behaves irrespective of the bus. From this we mayable to identify and verify

characteristics of vehicle motion that are indiwatof potential dangerous behavior. For
example, a vehicle that is tracked for 30 secondyg only exhibit dangerous behavior
during the last 5 seconds (e.g., tailgating). Itynb@ possible to correlate distinctive
motions (e.g., rapid lane changes) or vehicle charstics (e.g., dented body panels)
with confirmed risky behavior. Certain unverifiedspicions could be examined using

real, anonymous data.

11.6.2 Unify the FCWS and SCWS Tracking and Warning
Algorithms

Currently, the Advanced ICWS uses different obgetection and tracking algorithms
and different warning algorithms for the forwardking sensors and the side looking
sensors. The development of a common object detedtacking, and warning algorithm
using the 360 degree virtual sensor would greattiuce the complexity of the software,
with all the benefits of reduced development tinmreased robustness, and less
maintenance. It will probably also give the driverbetter intuition about the whole

system, because the front and the side behavenor@ consistent way.

11.6.3 Integrate ICWS with other electronic vehicle  systems

The following systems offer an opportunity for stardization and cost savings:
1. Annunciation Systems — This would provide dual esagf GPS based
information.
2. Bus Tracking Systems — This could add dispatch lmfya The cell phone
interface could call home if an incident occurs
3. Provide inputs to bus electronics standards J192& -standards evolve, they
should begin to accommodate the collision warnumgcfions. Perhaps a separate

safety bus should be defined.
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11.6.4 Improvements to the object tracking algorith ms (DATMO)

Improvements to the warning algorithm heuristicsl aibject models for pedestrians,
bicyclists and vehicles could be made. Areas fgorowement would be the ability to

recognize parked cars and longer distances froim cur

In the SCWS the warning algorithm can accommodatelats for the bus and the
objects. Currently we have an enhanced model ferldmhavior, but only very simple
models for pedestrian, cars, and fixed objects.r&hge no separate model for other
objects like bicyclists, motorcycles, animals, amgjetation. Models for all objects can
be developed or enhanced. The warning algorithmatsm make use of environmental
information like the position of the curb. Possibléhancements to the system are:

1. Increase the look ahead of the curb position aedtitying parked cars alongside
the road. 4: Knowledge - Knowledge about road amater could be used to
eliminate false alarms triggered by road-side dbjec out-of-lane objects.

2. Use more sophisticated algorithms to improve tlspaoase time of the turn rate
and acceleration estimates. These currentlyrdgenosarginally useful.

3. Improve the segmentation procedure so that it wédser in highly cluttered
environments (where objects are closer than 0.@nsgt

4. Assign classifications such as car, pedestriaryché¢c wall, and ground return to
tracks based on the change in shape and motiontiower This would allow us
to predict motion more accurately by using appmprdistinct dynamic models,
and could also reduce false alarms by detectingkdérahat change in ways

atypical of good tracks.

11.6.5 Improvements to FCWS warning algorithm
Improvements to the FCWS warning algorithm wouldoabe desirable in order to

enhance the performance of the CWS system. Theowaprents are mainly in the
following areas:

1. Transition of vehicle models: It was found that holonomic model is good for

moving targets in terms of estimating yaw-rate amaving direction. However at

lower speed, due to short displacement in procgssme, it is hard to detect
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moving direction. In this case free moving modelbitter. The transition of
vehicle models from higher speed to lower speedvarelversa needs improved.

2. Scenario parsing: This has been a topic sinceb#dgnning of the project.
However it is not well resolved yet. It needs tosider the relationship among all
objects and subject vehicle and infrastructure.r&uralgorithm only detects
straight road in-lane objects, and cannot avoisefavarnings due to lack of lane
information and driver status.

3. Driver model: Driver’'s field operational data weemnalyzed leading to the
empirical threshold settings. However more complexer model may help to
tell whether driver is attentive. Collision warniig supposed to be issued only
when driver is inattentive.

4. Knowledge - Knowledge about road and route couldiged to eliminate false

alarms triggered by road-side objects or out-otlahjects.

11.6.6 Sensor Fusion
Each of the sensors that are currently availablelistacle detections collision warning

system has its advantages and disadvantages. &mpéx LIDARS provide good range
and azimuth measurements but do not function plppender the bad weather
conditions. RADARs on the other hand, work with thaisweather conditions but do not
provide the level of accuracy that LIDARs providéeld testing also indicates that
additional information about road geometry and sidel furniture may help to reduce
false detections. It is likely more than one typsensors will be used in order to enhance
the reliability of the system. When sensor optiare considered, sensor fusion can help
to maximize the benefits of these sensors. Thigigsesearch area that is currently being
investigated under the ICWS program and it likelif vequire continuous investigation

beyond this program.

11.6.7 Develop an under the bus sensor

The current SCWS algorithms employ an inferred urmes logic which looks for the
disappearance of an object around the wheel weliseotransit bus. As described more
fully in the text concerning the warning algorithnaspositive indication from a specific

sensor would be a better indication of the presefic®mething in front of the wheels.
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The inferred method we are currently using is fdoby occlusions, multiple moving

objects in the same vicinity and the inability ®solve people boarding the bus and
someone slipping near the doorway under the banse $ioth objects disappear within the
same vicinity. The current algorithms detect toonynéalse positives to be used as a
strong measure of a problem. If a sensor could deeldped that gave fewer false
positives, then stronger operator interactions siscetting out of the bus to verify could
be implemented. As it stands, we can only give ratication that there might be a
problem.
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Appendix A:

Acronym Definitions

ACRONYM DEFINITION

APTA American Public Transportation Association
ARQ Acceleration Required

CALTRANS California Department of Transportation
CMU Carnegie Mellon University

CWS Collision Warning System

DATMO Detection And Tracking of Moving Objects
DTCMO Detection, Tracking and Classification of Moy Objects
DVI Driver Vehicle Interface

EODS Enhanced Object Detection System

FCWS Frontal Collision Warning System

FMI Foster Miller, Inc

FTA Federal Transit Administration

HF Human Factors

IBEO German Laser Scanner Company

ICD Interface Control Document

ICWS Integrated Collision Warning System

IRB Institutional Review Board

IVN In Vehicle Network

LED Light Emitting Diode

PAT Port Authority of Allegheny County

PATH Partners for Advanced Transit and Highways
PENNDOT Pennsylvania Department of Transportation
RAID Redundant Array of Inexpensive Disks

RI Robotics Institute

SAMTRANS San Mateo County Transit District

SCWS Side Collision Warning System

SICK German manufacturer of laser scanners
SLAM Simultaneous Localization and Mapping
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SV

Subject Vehicle

TTC

Time to Collision
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Appendix B:  Related Documents

Assessment of Technologies Supplementary Refqmit 2002, Christoph Mertz

ICWS Driver-Vehicle Interface April 2003 Design $gecation, prepared by Aaron
Steinfeld, Carnegie Mellon University and Joannesl.lUC Berkeley

Integrated Collision Warning Systems Interface @mnbDocumentdated August 2004
prepared by the California PATH Program, UniversifyCalifornia at Berkeley and the
Robotics Institute, Carnegie Mellon University

Evaluation of Integrated Collision Warning Systemogdsalprepared by the Robotics
Institute, Carnegie Mellon University and the Galifia PATH Program, University of
California at Berkeleyin collaboration with

California Department of Transportation (Caltrans)

Gillig Co.

Pennsylvania Department of Transportation

Port Authority Transit (PAT)

San Mateo Transit (Samtrans)

Transit Bus Collision Warning Systems IntegratiorodPam Proposabated 5/23/01
prepared by:

California PATH Program, University of California Berkeley

California Department of Transportation (Caltrans)

Clever Devices, Inc

Gillig Co.

Pennsylvania Department of Transportation (PennDOT)

Port Authority Transit (PAT)

Robotics Institute, Carnegie Mellon University

San Mateo Transit (Samtrans)

Evaluation Report: Driver Experience with the Enteth Object Detection System for
Transit Buses Final Repaitated December 12, 2003, Battelle / TRI

Transit Bus Frontal Collision Warning System FiR@portdated August 2003, Xigin
Wang, Joanne Lins, Ching-Yao Chan, Scott John#tan, Zhou, Aaron Steinfeld, Matt
Hanson, and Wei-Bin Zhang

Side Collision Warning System (SCWS) PerformancecBigationsdated May 2, 2002
prepared by the Robotics Institute, Carnegie Mellmiversity

Transit Bus Collision Warning Systems Performanceec8ications Interface
Requirements(Draft) dated October 25, 2002 by the CaliforniATP Program,
University of California at Berkeley and the Rolsstilinstitute, Carnegie Mellon
University
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Development and Validation of Functional Definitioand Evaluation Procedures For
Collision Warning/Avoidance Systendated August 1999, Kiefer, R. J., LeBlanc D. J. ,
Palmer M. D., Deering R. K., and Shulman M. A., NA Technical Report

Forward Collision Warning Requirement Projectsfifleg the CAMP Crash Alert

Timing Approach by “Examining” Last Second Brakiagd Lane Changing Maneuvers
Under Various Kinematic Conditiongated , Jan. 2003, Kiefer, R. J., Cassar, M. T.,
Flannagan C. A., LeBlanc D. J. , Palmer M. D., epR. K., and Shulman M. A,
NHTSA
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Appendix C:  Published Papers

Publications funded by this program

Eye-Safe Laser Line Striper for Outside U€e,Mertz, J. Kozar, J. R. Miller and C.
Thorpe

Multiple Sensor Fusion for Detecting Location ofr@s Walls, and BarriersRomuald
Aufreire, Christoph Mertz and Charles Thorpe

A 2D Collision Warning Framework based on a Mon&lQ Approach.Christoph Mertz
Simultaneous Localization, Mapping and Moving Objéracking, C. Wang doctoral
dissertation, tech. report CMU-RI-TR-04-23, Robstitnstitute, Carnegie Mellon
University, April, 2004

Development of the Side Component of the Tranggtated Collision Warning System,
Aaron Steinfeld, David Duggins, Jay Gowdy, John &goRobert MacLachlan, Christoph
Mertz, Arne Suppe, Charles Thorpe, Chieh-Chih Wang

Previous Publications

Dressed Human Modeling, Detection, and Parts Laeaion, Thesis for Liang Zhao
(CMU-RI-TR-01-19) July 26, 2001

Driving in Traffic: Short-Range Sensing for Urbamwl{sion AvoidanceChuck Thorpe,
Dave Duggins, Jay Gowdy, Rob MacLachlan, Christulgntz, Mel Siegel, Arne Suppe,
Bob Wang, Teruko Yata

Facts and Data Related To Bus Collisions InterinpdteApril 11, 2002

A New Focus for Side Collision Warning Systemd fansit BusesVay 2000

Side Collision Warning Systems for Transit Bugésistoph Mertz, Sue McNeil, and
Charles Thorpe

Side Collision Warning Systems for Transit Busamdional Goals,CMU-RI-TR-01-
11, David Duggins, Sue McNeil, Christoph Mertz, Ckurhorpe, Teruko Yata dated
5/14/01

Simultaneous Localization and Mapping with Detettad Moving ObjectsChieh-Chih
Wang and Chuck Thorpe

State of the Art of Technology Part I: General Gwew, Christoph Mertz dated April 15,
2002
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State of the Art of Technology Part Il: Investigatiof specific sensor§hristoph Mertz
dated April 15, 2002

Static Environment Recognition Using Omni-camer@amfra Moving VehicleTeruko
Yata, Chuck Thorpe, and Frank Dellaert

Stereo and Neural Network-Based Pedestrian Detecticang Zhao and Charles E.
Thorpe, IEEE Transactions on Intelligent Transpmia Systems, Volume 1, No 3
September 2000

“Studies of Accidents and Cost data for Transit Bug€un Zhou, Wei-Bin Zhang,
Gary Glenn, Xigin Wang, and Ching-Yao Chan, ITS W&ongress, Nagoya, Oct. 2004

“Development of Requirement Specifications for TitaRsontal Collision Warning
System- Final Repdit Xigin Wang, Joanne Chang, Ching-Yao Chan, Sdotinston,
Kun Zhou, Aaron Steinfeld, Matt Hanson, and Wei-Bimang, PATH Technical Report,
UCB-ITS-PRR-2004-14, May 2004

“Development of Requirement Specifications for TitaRsontal Collision Warning
Systerfy Xigin Wang, Joanne Lins, Ching-Yao Chan, Scattrdston, Kun Zhou, Aaron
Steinfeld, Matt Hanson, Wei-Bin Zhang, PATH TeclahiReport, UCB-ITS-PRR-2003-
29, November, 2003

"A new maneuvering target tracking algorithm wittput estimation"Kun Zhou, Xigin
Wang, Masoyashi Tomizuka, Ching-Yao Chang, and BieiZhang, American Control
Conference, Anchorage, Alaska, 2002

“Integrated Multi-Sensor Systerk Tool for Investigating Approaches for Transit
Frontal Collision Mitigatiori, Xigin Wang, Wei-Bin Zhang, Scott Johnston, Damey,

and Chinyao Chan, ITS World Congress, Sydney, Aliair2001

Functional Analysis of Frontal Collision Warningyssem M. El koursi, E.Lemaire,
Ching-Yao Chan, Wei-Bin Zhang, ITS World Congresginey, Australia, 2001
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“Studies of Accident Scenarios for Transit Bus Fabfollisions, Ching-Yao Chan,
Kun Zhou, Xi-Qin Wang and Wei-Bin Zhang, ITS Ameriénnual Meeting, Orlando,
Florida, 2001

“Scenario Parsing in Transit Bus Operations Fompdixnental Frontal Collision
Warning Systems”Ching-Yao Chan, Xi-Qin Wang, Wei-Bin ZhahgEE Intelligent
Vehicle Conference, Tokyo, Japan, 2001

“Develop Performance Specifications for Frontal @odin Warning System for Transit
buses” Wei-Bin Zhang, et al7" Intelligent Transportation Systems World Congress
Turin, Italy, November 6-11, 2000

“Preliminary Safety Analysis of Frontal Collision idance”, ElI Miloudi El Koursi,

Chinyao Chan, Wei-Bin Zhang, 3 IEEE Inernational Conference on Intelligent

Transportation Systems, Dearborn, Ml, Oct. 1-3,(200
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Appendix D:

Conversion Tables
ENGLISH TO METRIC

METRIC TO ENGLISH

LENGTH (APPROXIMATE)

linch (in) = 2.5 centimeters (cm)
1 foot (ft) = 30 centimeters (cm)

lyard (yd) = 0.9 meter (m)

1 mile (mi) = 1.6 kilometers (km)

LENGTH (APPROXIMATE)

1 millimeter (mm) = 0.04 inch (in)
1 centimeter (cm) = 0.4 inch (in)
1 meter (m) = 3.3 feet (ft)
1 meter (m) = 1.1 yards (yd)
1 kilometer (km) = 0.6 mile (mi)

AREA (APPROXIMATE)

1 square inch (sq in, in
(cm?)

1 square foot (sq ft, ft )

1 square yard (sq yd, yd %) =

2

1 square mile (sg mi, mi
(km?)
1 acre = 0.4 hectare (he)

%) = 6.5 square centimeters
0.09 square meter (m ?)

0.8 square meter (m 2
2.6 square kilometers

= 4,000 square meters (m ?)

AREA (APPROXIMATE)

1 square centimeter (cm %) = 0.16 square inch (sq in, in

1 square meter (m %) =

yd?)

1 square kilometer (km ?) =
10,000 square meters (m ) =

1.22 square yards (sq yd,

1 hectare (ha) = 2.5 acres

%

0.4 square mile (sq mi, mi %)

MASS - WEIGHT (APPROXIMATE)

MASS - WEIGHT (APPROXIMATE)

1teaspoon (tsp) =
1 tablespoon (tbsp) =
1 fluid ounce (floz) =

5 milliliters (ml)
15 milliliters (ml)
30 milliliters (ml)

lcup(c) = 0.24liter (I)

1 pint (pt) = 0.47 liter (1)

1 quart (gt) = 0.96 liter (I)
1 gallon (gal) = 3.8liters (I)

1 cubic foot (cu ft, ft %) =
1 cubic yard (cu yd, yd 3) =

0.03 cubic meter (m )
0.76 cubic meter (m )

1 ounce (0z) = 28 grams (gm) 1gram (gm) = 0.036 ounce (0z)
1 pound (Ib) = 0.45 kilogram (kg) 1 kilogram (kg) = 2.2 pounds (lb)
1 short ton =2,000 = 0.9 tonne (t) 1tonne (t) = 1,000 kilograms (kg)
pounds (Ib) = 1.1 short tons
VOLUME (APPROXIMATE) VOLUME (APPROXIMATE)

1 milliliter (ml) =

lliter () = 2.1 pints (pt)
lliter ) = 1.06 quarts (qt)
1liter (I) = 0.26 gallon (gal)

1 cubic meter (m 3) =
1 cubic meter (m 3) =

0.03 fluid ounce (fl 0z)

36 cubic feet (cu ft, ft %)
1.3 cubic yards (cu yd, yd %)

TEMPERATURE ExacT)
[(x-32)(5/9)] °F = y°C

TEMPERATURE ExacT)
[(9/5)y +32] °C = x °F

QUICK INCH - CENTIMETER LENGTH CONVERSION

0
Inches | |
Centimeters L

—_
N
wW
F

2
|
|
5

QUICK FAHRENHEIT - CELSIUS TEMPERATURE CONVERSION

-40° -22° -4° 14° 32° 50°
| ] } ] ] ]

+ 68°

86°
|

104° 122° 140° 158° 176° 194° 212°
] ] 1 ] 1 ]

| 1 T T T
T -40° -30° -20° -10° 0° 10° 20°

30°

| T T T T T 1
40° 50° 60° 70° 80° 90° 100°

For more exact and or other conversion factors, see NIST Miscellaneous Publication 286, Units of

Weights and Measures. Price $2.50 SD Catalog No. C13 10286
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