

A First Investigation of Truck Drivers' On-the-Road Experience Using Cooperative ACC C Administration

Shiyan Yang, Xiao-Yun Lu, Hani Ramezani, Steven Shladover

Introduction

- Cooperative Adaptive Cruise Control (CACC) enables shorter vehicle following distances than traditional ACC due to enhanced string stability
- CACC can increase traffic density, relieve traffic congestion, and increase energy efficiency.
- The impacts of CACC on drivers' experience and performance are still largely unexplored.

On-the-Road Experiment

Participants

• 9 professional fleet truck drivers from the US and Canada

Trucks

On-the-Road Experiment

Driver-CACC Interaction

Driver-Vehicle Interface (DVI)

Time Gap (second) of CACC and ACC						
Level	1	2	3	4	5	
CACC	0.6	0.9	1.2	1.5	1.8	
ACC	1.1	1.3	1.5	1.7	1.9	
D .						

Route

Walnut Creek **Richmond Field** Station **Q**

Task Procedure for Drivers

1 hr 18 min

- Training before Walnut Creek
- After Walnut Creek, drivers were free to choose preferred time gap
- Switched driver position at Westley
- Drove back via the same route

California PATH Program, University of California, Berkeley

Driver Demographics					
Mean Age	48				
Number and Gender	9 Male				
Familiarity with ACC	1.4 / 7				
Familiarity with collision	2.1 / 7				
warning systems					
Familiarity with truck	0.7 / 7				
platoon					

Time-Gap Preference

Drivers preferred levels 3 and 4 over levels 1,2 and 5.

Truck Position in Platoon

- 5 drivers didn't notice the \bullet difference between 2nd and 3rd positions
- 2 noticed the difference in braking system performance
- Only 1 driver reported that truck \bullet position affected his road vision and he preferred the 3rd truck

Cut-ins and Road Grade **Debriefing Question**

Comfort with CACC response to cut-in

Trust in CACC response to cut-in Reliability of CACC on upgrades

Reliability of CACC on

downgrades

Concluding Remarks

- for truck platooning
- limited on driver vision
- negative grade

Contact Information

Shiyan Yang (杨世炎) Tel: (979) 739-6860 Email: s.yang@berkeley.edu Results

5.2 / 7

5.0/7 4.6 / 7 3.1/7

• A first human factors study on cooperative adaptive cruise control • Participants preferred time-gaps 1.2 s and 1.5 s the most • The impact of truck position is very • Reliable CACC response to cut-in • Less reliable CACC response to road

Acknowledgements

Project partners: FHWA, Caltrans and Volvo Technology of America Driver Recruiting: Aravind Kailas and California Trucking Association Experiment supporters: John Spring and David Nelson, PATH