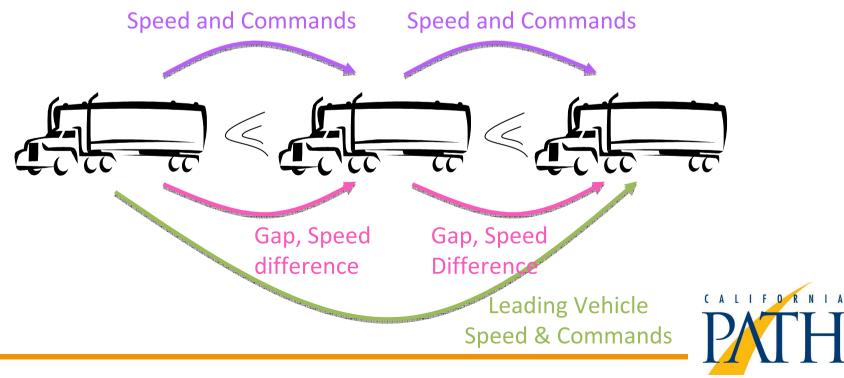
Partial Automation for Truck Platooning

FHWA Exploratory Advanced Research Project

Steven E. Shladover, Sc.D.

California PATH Program

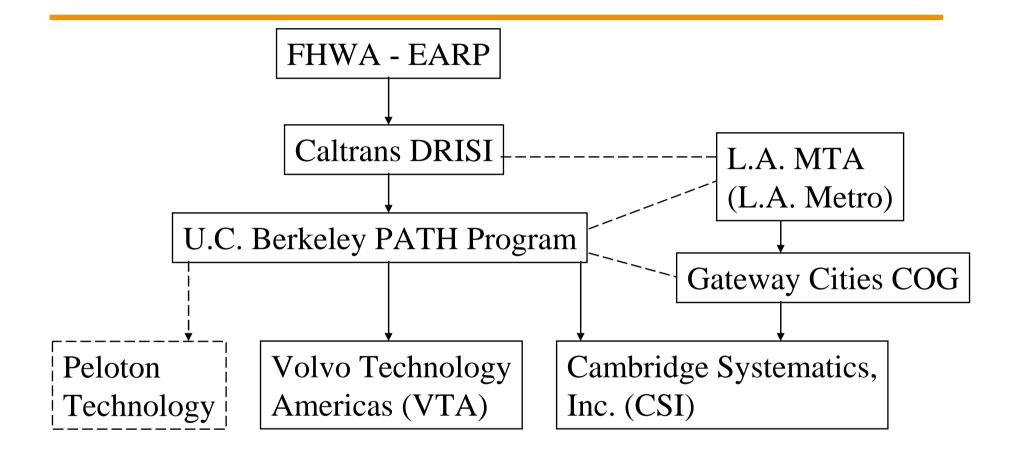

University of California, Berkeley

April 22, 2014

Cooperative Adaptive Cruise Control (CACC) for Class-8 Trucks

- Start with commercially-available Volvo truck adaptive cruise control
- Add vehicle-vehicle (V2V) data communications to enhance performance
- Driver chooses following gap and controls steering

Project Goals/Objectives


Research questions:

- Performance achievable with truck CACC in mixed traffic?
- Driver preferences for CACC time gaps?
- Energy savings at preferred time gaps?
- Benefits in truck lane capacity, energy and emissions?

Public policy:

- Deployment strategies for truck CACC
- Synergy with I-710 truck lane development
- Attractiveness to public and officials

Project Team

Relevant PATH Experience

- Development and testing of truck automation systems on closed test sites since 1998
 - Wind-tunnel tests of drag reductions on scale model trucks at USC since 1995 – potential saving up to 25% by follower
- Two-truck platoon development and testing 2000-2003 for Caltrans (constant-spacing gaps 3 – 10 m)
 - Leader saved 10%, follower saved 12% fuel
- Three-truck platoon development and testing for FHWA, 2007-2011 (constant-spacing gaps 4 - 10 m)
 - Leader saved 4%, followers saved 10-14% fuel
 - At sea level and highway cruising speeds, could have saved 1.5X more
- CACC simulated, implemented and tested on cars and crossovers

System Description

- Cooperative ACC with constant time-gap vehicle following (not a close-coupled platoon)
 - For passenger cars, shortest gap was 0.6 s
 (58 ft gap at 65 mph)
- Based on production ACC system on Volvo trucks + Denso WSU DSRC radios
- DSRC provides enhanced and earlier information about motions of and commands issued to preceding trucks
- Three Class-8 tractors to be equipped and tested

Project Experimental Work Planned

- Develop truck CACC, starting from existing Volvo ACC (2014-15)
 - Tighter control of gaps
 - Option to choose shorter gaps
 - Driver interface based on simulator tests
- Test driver preferences for gap settings (2015)
 - Formal human factors experiment, with representative truck drivers
- Measure energy savings at preferred gaps (2016)
- Public demonstration in southern California (2016)