Introduction to Truck Platooning

Steven E. Shladover, Sc.D.
University of California PATH Program
2017 ITS World Congress, Montreal, SIS-57
October 31, 2017

What is truck platooning?

- Coordinated driving of clusters of heavy trucks using automatic control of their speed and separation (SAE Level 1 automation)
- Extension of adaptive cruise control (ACC), measuring truck separation using radar and controlling engine and brakes
- Addition of wireless vehicle-vehicle (V2V) communication to enable close coordination
- Loose coupling by cooperative ACC or tighter coupling with constant clearance gap
- Driver steers and watches for hazards

Why care about truck platooning?

- Significant energy savings from aerodynamic drafting
- More stable vehicle following dynamics, reducing traffic flow disturbances and saving additional energy and emissions
- Increased highway capacity and reduced congestion from improved traffic dynamics and shorter gaps
- (Potential) safety improvement
- (Long term) possible labor savings if platoon following trucks can be operated without drivers

Truck Platoons are not new....

- CHAUFFEUR Project in Europe 1996-2004
- First U.S. project PATH research for Caltrans demo 2000-2003
- **German KONVOI Project 2005-9**
- **Japanese Energy ITS Project 2008-2013**
- **European SARTRE Project 2009-2012**
- **European Truck Platooning Challenge 2015-16**
- European multi-brand truck platoon project from 2018

SIS 57: Recent International Progress on Truck Platooning

- Steven Shladover: Development and Testing of a Three-Truck Cooperative ACC System
- Brian McAuliffe (NRC Canada): Aerodynamic Drag Reduction and Associated Fuel Savings from Multi-Vehicle Truck Platoons
- Bastiaan Krosse (TNO): Truck Platooning: An Evaluation of the Impact
- Richard Bishop (Peloton Technology): Update on Industry Collaboration Towards Commercial Deployment of Truck Platooning in North America

Development and Testing of a Three-Truck **Cooperative ACC System**

Steven E. Shladover, Sc.D. **University of California PATH Program** 2017 ITS World Congress, Montreal October 31, 2017

The Current Truck Implementation

- SAE Level 1 automation longitudinal control only (driver steers and monitors for hazards)
- Building on Volvo VNL series truck ACC system (using same radar and video sensors)
- Added 5.9 GHz dedicated short range communication (DSRC) radio for V2V data
- Added touch-screen tablet display to show status of trucks and select gap settings
- Driver usage tested on California freeways at gaps of 0.6 s to 1.5 s (15 to 37 m at 90 km/h truck speed limit)
- Developed under FHWA Exploratory Advanced Research Program

 DAT LI

V2V Communication/Cooperation

Cooperative ACC:

- Constant time gap control
- Ad-hoc joining and leaving at driver's option
- **Broadcast DSRC communications**

Truck CACC System Elements

Driver Interface

Steering wheel stalk control

Supplementary Display & Emergency Disengage Button Locations

Supplementary Display

Recent System Enhancements

- Wider range of gap settings implemented from 4 m minimum fixed gap to 3 s maximum time gap (87 m at 65 mph)
 - Cooperative ACC at longer time gaps
 - Tightly-coupled platoon at shorter gaps
- Adjustments to control response to enhance energy efficiency
- Responses to cut-in vehicles between trucks
 - Performance trade-offs in rapidity of recovery vs. energy spent in more aggressive maneuvers
 - Need even earlier detection of cut-ins

Driver Acceptance Tests

- Driving in mixed traffic on California freeways I-580 (suburban) and I-5 (rural) for ~3 hours
- 9 experienced long-haul truck drivers, driving both truck 2 and truck 3 at their choice of gap
- No preference regarding truck 2 or 3 position
- Gap of 1.2 s was most preferred, but some drivers (most experienced group) preferred shortest gap (0.6 s)
- They need to feel they can trust the other drivers in the CACC string/platoon
- Preferred rural usage over urban

Fuel Economy Testing at Blainville, QC (August 2017)

Comprehensive Fuel Economy Tests

 Sponsorship by U.S. DOE SMART Mobility program and Transport Canada ecoTechnology for Vehicles program

Transport Canada Transports Canada

- Experimental design and data analysis by National Research Council of Canada – Brian McAuliffe to follow
- SAE J1321 rigorous test procedure, weighing auxiliary fuel tanks before and after each 64-mile test run, each case repeated 3 times
- 65 mph, up to 3 trucks loaded to 65,000 lbs.

Simulations of Impacts in Urban Traffic

- Traffic microsimulation of I-710 corridor from Port of Long Beach to downtown Los Angeles
- 15-mile congested corridor, 10% to 19% trucks
- Assume all trucks use CACC at 1.2 s preferred time gap
 - 12% first follower position
 - 4% second or later follower
- Average truck speed 33 mph in base case, 40 mph with CACC relieving congestion
- Energy savings 2.5% from traffic smoothing,
 0.5% from aerodynamic drag reductions

