Truck Platooning: State of the Art Review

Steven E. Shladover, Sc.D.

California PATH Program

University of California, Berkeley

AVS17 Truck Automation Breakout Session

July 11, 2017

Why care about truck platooning?

- Significant energy savings from aerodynamic drafting
- More stable vehicle following dynamics, reducing traffic flow disturbances and saving additional energy and emissions
- Increased highway capacity and reduced congestion from improved traffic dynamics and shorter gaps
- (Potential) safety improvement
- (When Level 3 automation becomes feasible)
 Improvement in truck driving working conditions, with more diverse assignments for drivers
- (When Level 4 automation of followers becomes feasible) Reduced need for truck drivers

Enablers of Truck Platooning

- Adaptive cruise control (forward ranging sensor, plus engine, braking and transmission control)
- Fast, highly reliable V2V communication
- Informative driver-vehicle interface
- Reliable early detection of cut-in vehicles
- (For L2+) Lane position detection and automatic steering control
- (For L3+) Central supervision, I2V comm.
- (For L4) Extensive safety assurance + dedicated, segregated truck lanes (?)

Research Projects Building the Foundation Over 20+ Years

Years	Where	Project	# Trucks	Operating Mode
1996- 2004	EU	CHAUFFEUR	2, 3	CACC (mixed), L2 Towbar Platoon (dedicated), 6- 12 m gap
2000- 2003	US	Caltrans/PATH truck platooning	2	L1 platoon, 3-10 m gaps, closed track tests
2005- 2009	EU	Konvoi	4	L2 platoon, 10- 15 m gaps, mixed traffic tests
2008- 2013	JP	Energy ITS	4	L2 platoon, closed track tests, 4-10 m gaps
2009- 2012	EU	SARTRE (mixed truck and car platoon)	2	L2 Towbar platoon, mixed traffic tests, 6 m gaps for cars
2008- 2011	US	FHWA EARP/PATH truck platooning	3	L1 platoon, 4 – 10 m gaps, closed track tests
2013- 2017	US	FHWA EARP – PATH and Auburn Univ.	3 2	L1 CACC for mixed traffic tests, 0.6 – 1.5 s gap (15 – 37 m)
2015- 2016	US	TXDOT/ TTI truck platooning	2	L2 platoon, 15+ m gap, closed track tests
2015- 2016	EU	European Truck Platooning Challenge	2 (3 mfg) 3 (3 mfg)	L1 platoons from 6 manufacturers, on public roads

L1 Truck Platooning State of the Art

Automated longitudinal control only

- Cooperative ACC as first step (pre-platoon)
 - V2V communication/coordination
 - Ad-hoc joining and leaving
 - Constant time-gap following
- L1 Platooning
 - Add coordination/supervision by leader
 - Extend to constant clearance distance gap and shorter distances
- Many research and development projects
- Peloton Technology planning 2-truck product release
- Major truck manufacturers considering it seriously but no announcements yet

PATH/Volvo Truck CACC at 0.6 s Gap on Transport Canada's Test Track

L2 Truck Platooning State of the Art

L1 platooning + automatic steering control

- Automatic steering likely necessary for shorter longitudinal gaps (visibility limitations)
- Multiple research projects have tested it, from CHAUFFEUR (1996-2004) to Konvoi, SARTRE, **Energy ITS, etc.**
- Some companies doing R&D on it (Daimler, Scania, Otto,...)
- Product releases??

L3 Truck Platooning State of the Art

L2 + driver can divert attention temporarily to other tasks, while remaining available to intervene when needed

- Follower truck driver could work as sales person or logistics manager en route
- Research needed on driver-vehicle interface to try to ensure driver availability when needed
- Remote supervision (by lead driver over V2V or central supervisor over I2V communication link) could be needed
- Passenger car applications likely to precede heavy trucks

L4 Truck Platooning State of the Art

L3 + ability to ensure minimal risk condition without any human intervention (while operating within its specified Operational Design Domain – ODD)

- L4 platoon followers likely to be coupled behind a leader driven at L0, L1 or L2.
- Singapore requesting this for a 10 km route connecting two container terminals
- Safety assurance state of the art not sufficient to support this level of automation for mixed traffic and highway-speed operations
- Likely to need segregated truck-only lanes to simplify the ODD.